
93

S N E T E C H N I C A L N O T E

Model Reduction of Highly Viscous,
Non-isothermal Fluids with Free Surface Using

Perturbation Theory
Edmond Skeli, Dirk Weidemann, Klaus Panreck,

Institut für Systemdynamik und Mechatronik, FH Bielefeld, Interaktion 1, 33619 Bielefeld

{edmond.skeli,dirk.weidemann,klaus.panreck}@fh-bielefeld.de

SNE 32(2), 2022, 93-101, DOI: 10.11128/sne.32.tn.10606 
Received: 2020-11-10 (selected ASIM SST 2020 Postconf. 
Publication; Revised: 2022-05-02; Accepted: 2022-05-15 
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna, 
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. To improve energy efficiency, the process en-
gineering industry is increasingly tending towards an

application of model-based control and diagnosis ap-

proaches. Consequently, mathematical models are re-

quired that, on the one hand, describe the technical pro-

cess with sufficient accuracy, but on the other hand do

not require too much computational effort. In this re-

gard, the reduction of a model describing the behaviour

of a highly viscous, non-isothermal fluid with a free sur-

face is considered. The fluid is modelled by a system

of partial differential equations. This system includes

both the Navier-Stokes equations and the thermal en-

ergy equation describing the temperature behaviour.

Using perturbation theory it is shown that the velocities

and the temperature of the fluid can be modelled by two

reduced models, denoted as submodels. The first sub-

model is used to calculate the flow dynamics, while the

second submodel determines the thermal behaviour.

Introduction
In this paper, the inflow of a highly viscous, non-
isothermal fluid into the gap between two counter-
rotating cylinders is considered. Note that two condi-
tions have to be taken into account. First, the gap is ini-
tially empty and only fills with the fluid over time, so
that the inflow of the fluid is a transient process mod-
elled by a system of partial differential equations. This
system includes both the time-dependant, incompressible
Navier-Stokes equations and the thermal energy equation

describing the temperature behaviour. Second, a bulge
forms in front of the gap during filling, the size of which
changes over time until a steady state is reached. Since
the temporal change of the bulge is not known in advance,
the numerical solution of the system of partial differen-
tial equations simultaneously requires the determination
of the fluid boundary. In the following, the fluid bound-
ary, i.e. the surface of the fluid adjacent to the surround-
ing air, is also referred to as free surface.

A suitable approach to solve time-dependant, incom-
pressible Navier-Stokes equations with a free surface is
the Marker and Cell (MAC) method introduced by Har-
low and Welch in [1]. Amsden and Harlow simplified the
MAC method in [2] by decoupling the velocity and pres-
sure calculations. Furthermore, in [3, 4] the MAC method
is adapted for three spatial dimensions. Using the MAC
method an approach to determine the free surface of a
highly viscous, non-isothermal fluid entering the gap be-
tween two counter-rotating cylinders is proposed in [5].
However, it is not possible to apply it for model-based
control or diagnostic approaches due to the high compu-
tational effort involved.

In order to decrease the computational effort, it is rea-
sonable to reduce the mathematical model appropriately.
Normalising the partial differential equations yields two
individual time constants. These time constants allow a
qualitative assessment of the transient behaviour of the
velocities and the temperature, cf. [6, 7]. Using pertur-
bation theory (cf. [8, 9]), it can be shown that the veloci-
ties and temperature of the fluid evolve on different time
scales, suggesting that two reduced models, i.e. a fast and
a slow submodel, can be used. The fast submodel is ap-
plied to calculate the velocities of the fluid, assuming that
the fluid temperature does not change during this calcu-
lation. In contrast, the slow submodel is used to calculate
the temperature, with the steady-state velocity values be-
ing determined from a system of algebraic equations.
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In section 1, the mathematical model of the fluid, i.e.
the system of partial differential equations consisting of
Navier-Stokes equations and the thermal energy equation,
is converted into a normalised form so that two individ-
ual time constants can be determined. Each of the two
time constants can be used as normalisation parameter,
resulting in either a fast or a slow submodel using per-
turbation theory, cf. Section 2. A brief presentation of
the spatial discretisation and the marker and cell (MAC)
method is given in Section 3 and Section 4, respectively.
The solution procedure is outlined in Section 5. Finally,
the numerical simulation results calculated using the re-
duced model are presented and compared with the results
of the full model in Section 6.

1 Normalising the Model
Equations

The spatio-temporal evolution of the velocities as well as
the pressure of the highly-viscous, non-isothermal fluid
is modelled by incompressible Navier-Stokes equations
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with initial and boundary conditions

u(ζ ,0) = u0(ζ ) ∀ζ ∈ Γ, (4)

u(ζ , t) = h(ζ , t) ∀(ζ , t) ∈ ∂Γ× [0, te], (5)

where u, v represent the velocities in x-, y-direction, re-
spectively.

In the following, u = (u,v)T : Γ×R(+)→R2 denotes
the vector of fluid velocities, u0(ζ ) ∈ R2 the initial con-
ditions and h : ∂Γ×R(+)→R2 the boundary conditions,
where Γ ⊂ R2 is the domain and ∂Γ the boundary of the
domain. Furthermore, p : Γ×R(+)→ R is the pressure,
ρ ∈ R the density, and η(T ) ∈ R the viscosity.

The spatio-temporal evolution of the temperature is
given by
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where T : Γ×R(+) → R represents the temperature and
Cp,λ ∈ R are the specific heat capacity and the thermal
conductivity. Let the corresponding initial and boundary
conditions be given by

T (ζ ,0) = T0(ζ ) ∀ζ ∈ Γ, (7)

T (ζ , t) = d(ζ , t) ∀(ζ , t) ∈ ∂Γ× [0, te] (8)

with T0(ζ ),d(ζ , t) ∈ R.
Normalisation of the variables results in
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where un, vn, Πnx, Πny, xn, yn represent the normalised
velocities, gradients of the pressure, coordinates and tn,
Tn, ηn represent the normalised time, temperature, and
viscosity.

Using the normalised variables from (9), the system
of partial differential equations, which includes both the
Navier-Stokes equations and the thermal energy equation,
can be converted to
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Here

Re =
ρhū
η̄

, Br =
η̄ ū2

λ T̄
, Gr =

ūh2

aL
(17)

denote the Reynolds, Brinkmann and Graetz numbers and

tη =
ρh2

η̄
, τλ =

h2ρCp

λ
(18)

the viscous relaxation time and the conductive thermal
equilibrium time, respectively.

2 Model Reduction using
Perturbation Theory

In the following, the relation between the two time con-
stants given in (18) will be considered in more detail, as
these provide information about the transient behaviour
of the velocities and temperature. Dividing the viscous
relaxation time by the conductive thermal equilibrium
time yields

tη
τλ

=

ρh2

η̄

h2ρCp
λ

=
λ

η̄Cp
. (19)

and shows that
τλ >> tη (20)

holds due to the high viscosity of the fluid. Speaking in
physical terms, the relation (20) indicates that the dynam-
ics of the velocities is much faster than the dynamics of
the temperature.

Optionally, either t̄ = tη or t̄ = τλ can be used as the
normalisation constant. The following two subsections
discuss how the equations (10)-(13) change when t̄ = tη
or t̄ = τλ is chosen.

2.1 Viscous Relaxation Time as
Normalisation Constant

If tη is chosen as the normalisation constant, tη/t̄ =

tη/tη = 1 and τλ/t̄ = τλ/tη follow for the factors on the
left-hand side of (10), (11), and (13) such that the nor-
malised Navier-Stokes equations are of the form

∂un

∂ tn
= h1(tn,rn,un, p,Tn), (21)

∂vn

∂ tn
= h2(tn,rn,un, p,Tn), (22)

0 = h∇(rn,un). (23)

Furthermore, choosing tη/τλ = ε with ε� 1 as perturba-
tion parameter and multiplying the thermal energy equa-
tion (13) by ε results in

∂Tn

∂ tn
= εh3(tn,rn,un, p,Tn) = 0. (24)

The model given by (21)-(23) is referred to as fast sub-
model. It will be applied to compute the velocities when a
change in momentum occur. Since the temperature does
not change significantly over tη , the partial differential
equation (13) does not have to be solved. Rather, as in-
dicated by (24), the temperature can be regarded as being
approximately constant.

2.2 Conductive thermal Equalization Time as
Normalisation Constant

In contrast to Section 2.1, the choice of τλ as normal-
ization constant leads to a system of singularly perturbed
partial differential equations

ε
∂un
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= h1(tn,rn,un, p,Tn), (25)

ε
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= h2(tn,rn,un, p,Tn), (26)

0 = h∇(rn,un), (27)

∂Tn

∂ tn
= h3(tn,rn,un, p,Tn), (28)

where ε is defined as described above. Assuming ε → 0
the Navier-Stokes equations simplify to

0 = h1(tn,rn,un, p,Tn), (29)

0 = h2(tn,rn,un, p,Tn), (30)

0 = h∇(rn,un). (31)
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The model given by (28)-(31) is referred to as slow
submodel and is used to calculate the fluid temperature.
When calculating the temperature, the velocities are not
to be interpreted as differential, but as algebraic states
that have to be adjusted so that the algebraic conditions
(29)-(31) are satisfied.

2.3 Hybrid Model
In contrast to the approach in [5], which calculates the in-
flow of the fluid into the gap using the full model, i.e. the
partial differential equations (1)-(6), the approach pre-
sented in this paper uses the reduced model equations
(21)-(23) and (28)-(31). It can be shown that the com-
putation time decreases significantly by employing the
reduced models.

The slow submodel is used as long as no momentum
changes act on the fluid. Whereas the fast submodel is
used until the velocities of the fluid are stationary. Inter-
preting an momentum change as event emc and the oc-
currence of the stationary velocities as event esv, the fluid
can be modelled by the hybrid automaton shown in figure
1.

fast
submodel
(21)-(23)

slow
submodel
(28)-(31)

esv

emc

Figure 1: Reduced model as hybrid automaton.

3 Spatial Discretisation
Regarding the use of a numerical method to solve the par-
tial differential equations, a suitable spatial discretisation
is required. As depicted in figure 2 the velocities are cal-
culated at the middle of the vertical and horizontal edges
of the discretisation gird, whereas the pressure and the
temperature are calculated at the centre of a cell. This
grid, referred to as staggered gird, is chosen since it al-
lows for the solution to have a tight coupling between the
pressure and the velocity.

The partial derivatives of first order can be approxi-
mated by

Dx fi, j =
fi, j+1− fi, j−1

2∆x
, (32)

pi+1,j , Ti+1,j pi+1,j+1, Ti+1,j+1

pi,j , Ti,j pi,j+1, Ti,j+1

ui+1,j−1/2

ui,j−1/2

ui+1,j+1/2

ui,j+1/2

vi−1/2,j vi−1/2,j+1

vi+1/2,j vi+1/2,j+1

Figure 2: Staggered grid and calculation nodes.

Dx
− fi, j =

fi, j− fi, j−1

∆x
, (33)

Dx
+ fi, j =

fi, j+1− fi, j

∆x
, (34)

and partial derivatives of second order by

Kx fi, j =
fi, j+1−2 fi, j + fi, j−1

(∆x)2 , (35)

where f represents either u, v, p or T , n1,n2 ∈ R de-
note the number of discretisation lines in x- and y- direc-
tion, i = 1,2, ...,n1 and j = 1,2, ...,n2 are the indices of
the cells, and ∆x is the discretisation step in x-direction.
The operators Dy,Dy

−,D
y
+ and Ky are defined analogously

with ∆y= f∆y(x) being the varying step size in y-direction
of the curvilinear discretisation grid depicted in figure 3.

The curvilinear discretisation gird has the advantage
over a rectangular grid that all points are within the do-
main Γ. Thus, leading to less computational effort. How-
ever, a meaningful use of the curvilinear grid is only pos-
sible with sufficiently large radii, as there is a risk of in-
accurate calculation with small radii. Note that even with
the curvilinear discretisation grid, the velocities are still
computed at the centre of the cell edge, while pressure
and temperature are computed at the centre of the cell,
with the cell contour shown in 3.

Choosing this discretisation the fast system (21)-(23)
can be formulated as

Iu̇(t) = K(u)u(t)−Bp(t)+ f(u(t), p(t)) , (36)

0 = BT u(t) (37)
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∆yi

∆yi

∆yi

∆yi

∆yi+1

∆yi+1

∆yi+1

∆yi+2

∆yi+2

∆yi+2

∆yi+3

∆yi+3

∆yi+3

∆yi+3

∆x∆x∆x

∆yi+2

∆yi+1

Figure 3: Curvilinear grid.

and the slow system (28)-(31) as

0 = K(u)u(t)−Bp(t)+ f(u(t), p(t)) , (38)

0 = BT u(t), (39)

IṪ (t) = KT (u)T (t)+D(u)+g(T (t)), (40)

with I being the identity matrix and B = [Dx
+,D

y
+]

T the
discrete divergence operator,

K(u) =
[

K1 +N1(u) 0
0 K2 +N1(u)

]
with K1 = K2 = Kx +Ky representing the linear (diffu-
sion) and

N(u) =
[

N1(u)
N2(u)

]
=

[
ui, j+1/2Dx + v∗i, j+1/2Dy

u∗i+1/2, jD
x + vi+1/2, jDy

]

the non-linear (convection) terms. The velocities u∗i+1/2, j
and v∗i, j+1/2 are averaged velocities defined by

u∗i+1/2, j =
1
4
(
ui, j−1/2 +ui, j+1/2+

ui+1, j+1/2 +ui+1, j−1/2
)
,

v∗i, j+1/2 =
1
4
(
vi−1/2, j + vi+1/2, j+

vi+1/2, j+1 + vi−1/2, j+1
)
.

Moreover, f(u(t), p(t)) and g(T (t)) depend on the bound-
ary conditions such that these functions have to be
adapted according to the modification of the free-surface,
cf. Section 4. Finally, the operators for the temperature

calculation are given by

D(u) = 2η((Dx
+u)2 +

1
η
(Dy

+u+Dx
+v)2 +(Dy

+v)2)

and KT (u) = (K1 +NT (u)) with

NT (u) =
ui, j−1/2 +ui, j+1/2

2
Dx +

vi−1/2, j + vi+1/2, j

2
Dy.

4 Determination of the free
Surface

The MAC method which was introduced by Harlow and
Welch in [1] is implemented to determine the free surface
of the fluid. According to the MAC method, massless
particles are used to mark the fluid cells, i.e. each cell of
the discretisation grid that includes at least one massless
particle is part of the area containing the fluid. Thus, the
massless particles are referred to as markers. If one or
more empty cells of the discretisation grid are adjacent to
a cell filled with fluid, the free surface passes through the
fluid cell. Such constellations are shown in figure 4 and
figure 5, respectively.

Note that normal and tangential stresses on a free
surface of an incompressible fluid are equal to zero (cf.
[10, 11]). Thus, the boundary values of the velocities and
the pressure on the free surface have to satisfy

p
ρ
= 2

η

ρ

[
nxnx

∂u
∂dx

+

nxny

(
∂u
∂y

+
∂v
∂x

)
+nyny

∂v
∂y

]
, (41)

[
2nxmx

∂u
∂x

+2nymy
∂v
∂y

]
=

− (nxmy +nymx)

(
∂u
∂y

+
∂v
∂x

)
, (42)

where n = (nx,ny) is the normal and m = (mx,my) =

(ny,−nx) is the tangential vector.
The following two examples serve as an explanation

for determining the boundary conditions. In figure 4 the
marked cell at the bottom left is only adjacent to a single
free cell above it. Consequently, the normal component
nx is zero or at least very small, such that (41), (42) sim-
plify to

pi, j−2η(Dy
+v) = 0, (43)
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Dy
+u =−Dx

+v. (44)

The pressure pi, j and the velocity vi+1/2, j are calculated
with (43) and (44), respectively.

pi,j

ui,j−1/2 ui,j+1/2

ui+1,j+1/2

vi−1/2,j

vi+1/2,j vi+1/2,j+1

Figure 4:Marked cell with a free adjacent cell.

In figure 5, two empty cells are adjacent to the marked
cell, in such a scenario it is assumed that the normal vec-
tor has an angle of 45 degrees, i.e., points upwards to the
right. In this case, (41), (42) simplify to

pi, j−η(Dy
+u+Dx

+v) = 0 (45)

and
Dx
+u−Dy

+v = 0. (46)

The pressure pi, j is calculated based on (45), whereas
the velocities are set to ui, j+1/2 = ui, j−1/2 and vi+1/2, j =

vi−1/2, j such that (46) is met. Further scenarios can be

pi,j

ui,j−1/2 ui+1,j+1/2

vi−1/2,j

vi+1/2,j

Figure 5:Marked cell with two free adjacent cells.

found in [2].

5 Solution Procedure
The solution procedure includes both the calculation of
the two submodels and the switching between the sub-
models.

5.1 Fast Submodel
Regarding the calculation of the fast submodel (36)-(37),
the projection method of Chorin is implemented accord-
ing to the algorithm proposed in [12]. Note that the tem-
perature values are kept constant such that T k = T k−1

holds. The algorithm contains:

• Perform a semi-implicit time discretisation of (36)-
(37) resulting in

uk−uk−1

∆t
= K(uk−1)uk−1−Bpk + fk, (47)

0 = BT uk (48)

with ∆t being the step size and k the current time
instant.

• Decouple the pressure from the momentum equation
(47) and calculate the pseudo velocities ũ by solving

ũ−uk−1

∆t
= K(uk−1)uk−1 + fk. (49)

for ũ.

• Calculate the pressure by solving

∆tBT Bpk = BT ũ (50)

for pk and calculate the corrected velocities accord-
ing to

uk = ũ−∆tBpk. (51)

5.2 Slow Submodel
The calculation of the slow subsystem (38)-(40) is done
according to the following steps:

• Perform a semi-implicit time discretisation of (40)
resulting in

T k−T k−1

∆t
= KT (uk−1)T (t)+D(uk−1)+g(T k−1)

(52)
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and calculate the temperature by solving (52) for T k.

• Decouple the velocities from the pressure and calcu-
late the pseudo-velocies ũ by solving the non-linear
system of steady, spatially discretised Navier-Stokes
equations given by

0 = K(ũ)ũ+ fk. (53)

• Determine the pressure by solving

∆tBT Bpk = BT ũ (54)

for pk.

• Correct the velocities according to

uk = ũ−∆tBpk. (55)

5.3 Switching Submodels
As long as there are no momentum changes, the slow
submodel is used. A change in momentum, indicated by
event emc (see figure 1), is assumed to take place when the
fluid enters a cell of the discretisation grid at time t that
was previously at time t− 1 not filled with fluid. Such a
scenario is shown in figure 6, where the left plot shows
the cell occupancy at time t− 1 and the right plot shows
the occupancy at time t.

Fluid

t− 1

Fluid

t

Figure 6: Cell occupancy at t−1 and t.

As soon as the occupied cells do not change and the
velocity of the fluid in these cells is stationary, indicated
by event esv, the slow submodel is used. The plot on
the left side of figure 7 implies that with constant cell
occupancy, the velocities differ at times t−1 and t. In this
case, it is imperative to continue using the fast submodel.
In contrast, stationary velocities are present in the plot on
the right-hand side, so that a submodel switch takes place.

Fluid

u(t) 6= u(t− 1)

v(t) 6= v(t− 1)

Fluid

u(t) = u(t− 1)

v(t) = v(t− 1)

Figure 7: Stationay vs. transient velocities with constant cell
occupancy.

6 Simulation Results
Though the complete evolution of all quantities, i.e. ve-
locities, the pressure, and temperature over time have
been calculated, in the following only the temperature
and the velocity in x-direction at the time tss are pre-
sented, where tss indicates the time at which the steady
state is reached. Note the the computations takes about
10 hours for the full model but only approx. 10 min. for
the reduced model.

The initial temperature field in a cross-section located
in the middle of the cylinders is depicted in figure 8. As
can be seen in figure 8 the initial temperature of the fluid
is 425K while the ambient temperature is 400K and the
temperature of the cylinders is 433K.

Figure 9 shows the calculated temperature field of the
fluid in a cross-section using the full model. In contrast,
the temperature field calculated with the reduced model
is shown in figure 10. Although there are differences be-
tween the temperature field determined by the full model
and the temperature field calculated using the reduced
model, the reduced model shows a behaviour similar to
that of the full model in terms of quality and quantity.
Comparing the initial temperature field with either figure
9 or 10, one can see from the temperature change which
place the fluid has occupied in the steady state.

For the velocity in the x-direction, a similar charac-
teristic can be seen as for the temperature, with the ini-
tial velocity field being shown in figure 13. Only minor
differences exist between the results of the full model,
shown in Figure 12, and those calculated with the re-
duced model (see Figure 13). Note that some negative
velocities occur in the gap. These negative values result
from the high pressure gradient which occurs when the
fluid enters the gap, so that the pressure gradient counter-
acts the flow, resulting in a backflow of the fluid such that
a limited bulging occurs in front of the gap. In addition,
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Figure 9: Temperature field in a cross-section (full model).

the pressure in some gap sections decreases continuously.
In these sections, the pressure gradient acts in positive x-
direction, which leads to increased velocities as can be
seen in figure 12 as well as in figure 13.
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Figure 8: Initial temperature field in a cross-section.

7 Conclusion
The simulation of models describing the behaviour of
highly viscous, non-isothermal fluids is usually associ-
ated with a high computational effort. Thus, such models
are neither used for model-based control methods nor for
model-based diagnosis. Using perturbation theory, how-
ever, it can be shown that the velocities and the temper-
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Figure 10: Temperature field in a cross-section (reduced
model).
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Figure 11: Initial velocity in x-direction in a cross-section.

ature of the fluid evolve on different time scales, which
indicates that two reduced models, i.e. a fast and a slow
submodel, can be applied. As long as the fast submodel
is used, the velocities are calculated assuming a con-
stant temperature field, since the latter quantity evolves
on a lesser time scale. In contrast to the fast submodel,
the slow submodel calculates the temperature assuming
steady-state velocities evolving on a faster time scale.
A comparison of the results calculated with the differ-
ent models (full model vs. reduced model) shows a high
level of agreement. Although the difference in computa-
tional effort is significantly (approx. 10 hours for the full
model vs. approx. 10 minutes for the reduced model),
further model reduction is necessary in order to use the
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model).

model reasonably for model-based control and diagnosis
approaches.
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