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Introduction

In 1994, ARGESIM has set up the ARGESIM Com-
parison on Parallel Simulation Techniques (CP1).

There, three test examples have been chosen to investi-

gate the types of parallelisation techniques best suited to

particular types of simulation tasks ([1]). The new

ARGESIM Benchmark on Parallel and Distributed Sim-
ulation (CP2) extends the previous comparison,

addressing not only simulation software and predefined

given algorithms, but also allowing use of different

algorithms for solving the tasks and comparing different

strategies for parallelisation or distribution of the tasks.

1      Contribution to Benchmark CP2

The ARGESIM Benchmark on Parallel and Distrib-
uted Simulation test benefits of parallel and distrib-

uted simulation with three case studies:

• Monte-Carlo study for parameters in a 

dynamic mass-spring system

• Case study for Lattice-Boltzmann simulation

for fluid flow (famous cavity flow problem

published by Hou et al.)

• Solution of the PDE for the swinging 

string with different approaches

Participation at this benchmark requires:

• Documentation of the algorithms for solving

the case studies (one or more algorithms)

• Documentation of the strategy for 

parallelising or distributing the case studies 

(one or more strategies)

• Serial solution of the case studies

• Parallel / distributed solutions of the case 

studies 

• Determination and documentation of 

efficiency of parallelisation

In detail, a contribution to this benchmark should for

each case study describe first the approach or the algo-

rithms for calculating solutions, followed by informa-

tion about the method of parallelisation or distribution

of tasks and subtasks. It is highly appreciated, if more

than one solution for a particular case study is given,

either using different parallelisation strategies or

strategies for distribution, or by using different hard-

ware environments, or by using different algorithms

for calculating solutions. 

In the following results of the case studies should be

presented, based on a comparison of a serial solution

and the parallel / distributed simulation of each case

study.

For quantitative comparison of serial solution and par-

allel or distributed solutions, performance should be

assessed in terms of the relative speed-up factor, a

numerical value found by dividing the time for serial

solution by the time for the parallel solutions (speed-

up factor f ). 

Measurements of time, whenever necessary, should be

in terms of the total elapsed time for running the task.

Furthermore, a rough indication should be provided

for the (time) effort for implementing a parallel / dis-

tributed simulation (at best compared with implemen-

ting the serial solution).

Contributions to this benchmark will be published in

the journal SNE – Simulation News Europe. Solutions

sent in should not exceed four SNE pages and will be

reviewed by the editorial board and by authors of the

benchmark. Whenever possible, also model files and

code should be provided, or linked.

This ASIM / ARGESIM Benchmark on Parallel and Distributed Simulation addresses benefits of parallel and

distributed computing in the area of continuous, discrete, and hybrid simulation and in related areas. This new

benchmark may be of interest for users of all types of parallel and distributed facilities. The spectrum may range

from parallelisation strategies and strategies for distributing tasks, via general purpose programming languages

to simulation languages, and from networks of workstations, via special parallel computers, to very high per-

formance computers. The problems considered are a Monte-Carlo study for parameters in a dynamic mass-

spring system, a case study for Lattice-Boltzmann simulation for fluid flow (famous cavity flow problem pub-

lished by Hou et al.),  and solution of the PDE for the swinging string with different approaches.  



C1Case Study 1 

Monte Carlo Study

The first case study is a Monte Carlo study. In a

damped dynamic mass – spring system the damping

factor is randomly disturbed, and the mean of a sam-

ple of dynamic outputs is to be calculated. The second

order mass-spring system is described by the follow-

ing ODE, where the damping factor d should be cho-

sen as a random quantity uniformly distributed in

[800, 1200]:

The task is to calculate a sample of r = 1000 results

x(t,idi) of the motion (Figurei1 shows x( t, 1000) ) and to

calculate the mean motion xmean( t) over the time interval

[0, 2] with a resolution (stepsize) of 0.01 (n = 200 steps):

As the model is a linear one, the solution can be provided

also analytically, not only by using an ODE solver:

While the ODE may be basis for a parallelisation of

the varying damping factor, the analytical formula

may be a basis for parallelisation of the 201 time

instants, where a solution is to be calculated.

For documentation, we ask for a precise description of

the parallelisation strategy used, and for comparison

of the solutions we ask for a plot of the mean motion

xmean(t) and of values for the speed-up factors f. 

C2 Case Study 2 

Lattice Boltzmann Simulation

The second case study addresses the Lattice Boltz-
mann Method (LBM) for fluid flows, which is wide-

spread in parallel simulation domains today. The pur-

pose of the Lattice Boltzmann Method is to simulate

fluid behaviours in complex geometries efficiently in

parallel. Traditional fluid simulations, which are

based on numerical solutions of the Navier Stokes

equations have limited parallel potential and can

hardly handle complex. geometries. 

The Lattice Boltzmann Method ([2]) is derived from

the Lattice Gas (Cellular) Automata (LGA), a cellular

automata approach which considers single particles

on lattice nodes. In contrast to LGA, LBM deals with

distribution function values instead of single particles.

The exact denomination for the Lattice Boltzmann

Method is Lattice Boltzmann BGK Method (LBGK),

caused by the special collision operator being intro-

duced by Bhatnager, Gross and Krook in 1954.

In lattice gas cellular automata, space, time, particle

velocity, and particle occupation state are all discrete.

In LBM and LBGK, particle occupation state on

nodes is replaced by single-particle distribution func-

tions (real valued).

In 2D square LBM, a square lattice with unit spacing

is used. Each node has eight nearest neighbours being

connected by eight links (see Figurei2). Particles on

nodes move along the axes and along the diagonals

with discrete speed, furthermore, non moving parti-

cles with speed zero are allowed. The occupation of

particles is represented by a single-particle distribu-

tion function. The distribution function  represents the

probability to find a particle at a certain node. 
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Figure 1: Plot of the analytical solution of the second 

order mass – spring system with d = 1000. Figure 2: Nearest neighbour links of a lattice node.



The Lattice-Boltzmann BGK equation equals particle

propagation terms and particle collision terms. In sim-

ulation, in each time step, two operations have to be

performed: collision and propagation due to the equa-

tions ([3]).

The case study is based on on a special problem in

fluid dynamics, the famous cavity flow problem pub-

lished by Hou et al. in J. Comput. Physics ([4]), where

the behaviour of an incompressible fluid in a square

enclosure, driven by a constant stream on the top

boundary is examined (see Figurei3).

For a description of the geometry matrix g, cell types are

divided into wall cells (Wi), driving cells (Di) and fluid

cells (Fi). For a lattice size of 2iHi2, the matrix g is given

in the following:

The uniform translation on top of the cavity is given as

u0xi=i0.1, u0yi=i0, where the Reynolds number is

Rei=i1000. At any grid point, the initial macroscopic

velocity is uxi=i0, uyi=i0 and the initial density is ρ i=i1.

The task is, to simulate the cavity flow with lattice size

257 H 257 for a number of 350.000 iterations. After this

number of iterations, steady state is reached. Simula-

tion results are shown in Figurei3.

For documentation, we ask for a precise description of

the parallelisation strategy used, and for comparison of

the solutions we ask for a plot of relative macroscopic

velocity magnitudes (iui/iu0) at steady state and for val-

ues of the speed-up factors f (please note, that also a

serial solution is necessary for this purpose).

A problem discussion in detail and links to sequential

reference implementations as well as to introductory

materials for the lattice Boltzmann method are pro-

vided at WWW.MB.HS-WISMAR.DE/CEA/LBM.

C3 Case Study 3 – Solution of a 

Partial Differential Equation

The third case study is  based on a second order partial

differential equation describing a swinging string with

length L fixed at both ends, excited at the beginning 

One approach for solving this PDE is the method of

lines, using discretisation of space. Discretising the

space into N equidistant intervals and replacing the dif-

ferential quotient uxx(t,ix) by a central difference quo-

tient, a set of weakly coupled ODEs replaces the PDE:

Also an analytical solution (approximation) can be

calculated because of linearity. A classical separation

approach u(t,ix) = X(x)i.T(t) can be used for calculat-

ing the solution. 
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Figure 4: Relative macroscopic velocity magnitude (u/u0)

in cavity flow after 350000 iterations on a 257x257 grid.

Figure 3: Lid-driven cavity flow.



This yields with given initial and boundary conditions

a solution with a Fourier series ([5]):

Figurei5 shows a surface plot of the solution, Figurei6

and Figurei7 show solution lines in x and t, calculated

with Fourier series (series cut at 100 summands).

In principle, also discretisation of space and time may

be suitable. For instance, using for space discretisation

a central difference quotient as in method of lines, and

using for time backwards difference quotients (as well

for PDE and for initial condition) yields a linear system

for u(tk, xi), which may be parallelised for solution. Of

course, other algorithms for solving the PDE may be

used, with varying grids etc, which can be parallelised

or distributed appropriately.

In general, the system is to be solved with a spatial dis-

cretisation of N = 500 lines at the interval [0, 10] with

time discretisation of 0.01s (m = 1000 steps).

For documentation, we ask for a precise description of

the parallelisation strategy used, and for comparison of

solutions we ask for plots of the lines 

ui(ixi=i3L/4,iiti), iiiiui(ixi=iL/2,iiti) 
ui(ix,iiti=i15),iiiiiiiii ui(ix,iti=i30), 

and of a surface plot (excitation versus space and time).

Furthermore, give values for the speed-up factors f .
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Figure 5: Surface plot for the swinging string 

– excitation in dependency of space and time. Figure 5: Solution of the PDE, excitation over time at 

x = 0.375 and x = 0.25.

Figure 7: Solution of the PDE, excitation over space at 

t = 5 and t = 8.




