
Comparison of Parallel Simulation Techniques 
Cogent XTM / "mosis" 

"mosis" (modular simulation system) is a CSSL-simu­
lation system specially designed for submodel structures 
and mapping them on multiprocessor systems with distri­
buted memory, like transputer systems, workstation clu­
sters etc. It has been developed at the Dept. Simlation 
Technques of TU Vienna on the basis of "C" and has most 
features of other simulation languages based on differen­
tial equations (various integration algorithms, event hand­
ling) with the possibility to expand the system by user 
functions. It is designed to work on many different hard­
ware platforms, not only on parallel, but also on serial 
machines like single workstations and PC's (multitas­
king!) where the user interface (except from windowing 
etc.) is everywhere the same independent from the hardwa­
re. It can also be used (without the parallel features) as an 
all-purpose simulation language. 

"mosis" consists of a "mosis"-to-"C" compiler and a 
run-time system in object code to link user models. The 
run-time system contains I/O routines, graphics, a "C"­
like interpreter language and an object oriented simula­
tion kernel. For a simulation study, at run-time first 
instances of the models (sub models) must be generated 
(containing all the data, allocated at run-time) and con­
nected together, if necessary (see figure); then the si­
mulation can be started (before that the user can set 
parameter values, etc). This concepts allows instancing 
and simulating simultaneously different models. 

model C I 

instance c1 

In "mosis" it is possible to split a bigger model into 
several smaller models that can be simulated on diffe­
rent processors (and connect them via special unidirec­
tional "mosis" -links; see figure). The connections have 
to be done at run-time (without having to re-compile 
the whole system). At each communication interval the 
data of the output values in one instance are sent to the 
corresponding input signals of the other instance. 

Models are compiled to "C"-files and linked to the 
run-time system. At this level, the user can access 
models ("A", "B") in the following way: 

int al; int bl; 
al=instance("A",2); bl=instance ("B",l); 

The second parameter tells the system on which 
processor the instance should be created (on parallel 
computer systems). Two instances are linked together 
with the "connect" command. When one instance is 
started, all other instances depending on this instance, 
are also started automatically. The values of a variable 
depending on the time are saved with the "watch" 
command: 
connect(al.ovall,bl.i); 
watch(al.x); run(al); 

All simulations are done in the background (also on 
PC's); during the calculation it is possible to view 
values of variables continuously, to stop or start instan­
ces or to enter any other command. 

"mosis" has been currently implemented on the fol­
lowing systems: PC's (Borland C), 386+ (Watcom 
C/32), UNIX workstations with X Window and PVM, 
and the transputer workstation Cogent XTM ("mosis" 
version 1.0 a). "mosis" is free software; it may be 
copied for non-commercial use and will be available 
with the first distributed test version 1.0 ~ on the 
simulation server "simserv.tuwien.ac.at" via anony­
mous ftp (from Sept.'94 on). 

The Cogent XTM consists of 20 Transputers TSOO 
with 20MBit-Links and a faster bus connection for 
short messages. Each transputer has 4 MB of local 
memory (without swapping). For communication, 
"Kernel Linda" is used which simulates some kind of a 
shared memory pool for all processes. The operating 
system is QIX. The system is dynamically scalable. 

All simulations within "mosis" have been done 
using double precision (standard); the Kernel Linda 
calls are used to simulate a message passing mechanism 
between the tasks. "mosis" and all comparison exam­
ples were compiled using the same ANSI-C compiler 
on the Cogent. As requested, in all of the comparisons 
the RK4 algorithm was used (different stepsizes). 

a) Monte-Carlo Simulation: This problem was 
solved with 8 transputers with a static load balancing: 
Every transputer had to simulate 125 times the system 
and store the simulation results. In the last run, the sum 
of all simulated values is sent to the main process. In 
this case, this is the best solution, as all processors have 
the same speed and all are exclusively used by this 
calculation. Therefore all processes need nearly the 
same time to simulate their tasks (speed variation< 0.5 %). 

Although the conditions were nearly ideal for this 
comparison, the resulting speed-up factor for eight 
processors was only f=4.4. The reason of this relatively 
bad value is probably that the polling for received 

Number 11, July 1994 - p36- EUROSIM - Simulation News Europe 



signals during the simulation run takes much time. In 
the first distributed version of "mosis" this overhead 
will be significantly reduced. 

Model description: 
model mcarlo () 
{ /* parameter declarations etc. */ 

initial { /* initialisation */ } 
dynamic { derivative { 

X'=Xp,0.1; 
xp'=(-dgauss*xp-kx*m)/m,0.0; 

} } } 

Commands at run-time: 
int i; int p[S]; 
for(i=O;i;i++) p[i]=instance("mcarlo",i+l); 
/* on processor i+l */ 
for(i=O;i;i++) run(p[i]); 
/*start all 8 instances simultaneously*/ 

b) Coupled predator-prey population: Paralleli­
sation of this example was not successful (because of 
calculation speed>> communication speed). First, with 
communication performed at every integration step 
(cint = h = 0.01, RK4), the parallelisation resulted in a 
"speed-up"-factor off=0.06; with reduced communica­
tion (cint=lOh) f increased to f=0.3 (3.3 times slower). 
Increasing the communication interval to cint=20h led 
to a factor of f=0.61 (1.61 times slower). All five tasks 
were located on different processors, therefore the com­
munication overhead was very high. 

EUROSIM - Simulation News Europe 

c) Partial differential equation: This example was 
simulated with a discretisation into N=800 lines; 8 
processors were used here, each of them held 100 lines 
or 200 state variables; at each communication point the 
boundary values were interchanged between neighbou­
ring blocks (8 tasks; 14 connections). 

Experiments were done by varying the communica­
tion interval from cint=h (0.005) to cint=8h; the resul­
ting speed-up factors (results with cint>8h unstable): 

cint h 2h 4h 8h 

4.33 4.56 5.64 6.04 

The time used for developing the parallel versions 
was the same as for the serial solution, as they could 
easily transformed into one another and the message 
passing algorithms are hidden to the user: he/she can 
use the I/O signals like common variables; input and 
output is automatically done by the simulation system. 

G. Schuster, F. Breitenecker, Dept. Simulation 
Techniques, Technical University Vienna, Wiedner 
Hauptstrafte 8-10, A-1040 Wien, Austria. 

- p37 - Number 11, July 1994 


