
Dezember 2003 46

C
O

M
P

A
R

S
IO

N
S

SIMULATION NEWS EUROPE

Is
s
u
e
 3

8
/3

9

C9 Fuzzy Control of a Two Tank System, SNE 17,
(7/96), asks for approaches and for
implementations of modules for fuzzy control.

 SP: support for fuzzy control, two-dimensional
calculations for control surface, pure discrete
approach possible

C10 Dining Philosophers II, SNE 18 (11/96),
reviews discrete simulators with respect to concur-
rent access to resources and with deadlocks.

 SP: discrete random variables, simultaneous events,
deadlock recognition

C11 SCARA Robot, SNE 22 (3/98), deals with
implicit and hybrid systems with state events.

 SP: implicit model, different approaches for collision
event and action

C12 Collision of Spheres, SNE 27, November 1999,
allows numerical or analytical analysis as well as
continuous or discrete approaches

 SP: broad variety of approaches (numerical - con-
tinuous, numerical – discrete, numerical – analyti-
cal, analytical – symbolic), collision limit

C13 Crane Crab with Embedded Control, SNE 31
(3/01), revised SNE 35/36 (11/02) checks tech-
niques and features for embedded digital control
with sensors and with DAE-systems

 SP: implicit model, discrete control coupled with
sensor diagnosis, complex experiments

C14 Supply Chain, SNE 32/33 (11/2001), SNE 34
(7/2002) addresses discrete simulators - features
for supply chain systems (messages, strategies)

 SP: distinction between material flow and order flow,
distance-dependent control strategies

C15 Clearance Identification, SNE 35/36 (11/02),
checks identification features (based on measured
data) and influences of noise

SP: identification algorithms, short-term input func-
tions (Dirac-like), support of statistics

Solutions
We invite all readers to participate in these com-

parisons. Please, simulate the model(s) with any tool
of your choice and send in a solution. A solution
should consist of: a short description of the simulator,
modelling technique, model description, and results of
the three tasks. Additionally we ask for model sources

The solution should fit into one page of SNE –
templates are found at our web page. Solutions sent
in are reviewed.

Felix Breitenecker
FFeelliixx..BBrreeiitteenneecckkeerr@@ttuuwwiieenn..aacc..aatt

A MATLAB – based Solution to
ARGESIM “Comparison of Parallel
Simulation Techniques” using a
DP-Toolbox
R. Fink, S. Pawletta, T. Pawletta, University of
Applied Science Wismar, Germany

rr..ffiinnkk@@ssttuudd..hhss--wwiissmmaarr..ddee

Simulator: MATLAB is a widely used tool for rapid
prototyping in engineering sectors. One big disadvan-
tage of MATLAB is the lack of parallel processing fea-
tures. To overcome this disadvantage, several tools
were developed expanding MATLAB by those fea-
tures. One of these tools is the DP-Toolbox, where DP
stands for distributed and parallel.

The DP-Toolbox was developed from 1995 until
1999 at the University of Rostock and since 2002 at
the University of Applied Science Wismar. Communi-
cation and synchronisation is done via message pass-
ing using the software package PVM (Parallel Virtual
Machine). The DP-Toolbox consists of two levels: DP-
High and DP-Low. At the DP-Low level, PVM func-
tions were mapped to MATLAB functions using MAT-
LAB’s MEX interface. At the DP-High level, low level
functions will be bundled into easy to use high level
functions. The toolbox was mainly developed for Unix
platforms, where older versions (1.4.x) also support
Win32 systems.

Task a: Monte Carlo study: All simulation runs
can be performed independently. Therefore, the basic
idea is to distribute the runs to the available proces-
sors. Since the single simulation runs took similar
times, static load balancing was used. For balancing

the load statically only one DP-High function (dps-
catter) was needed. Due to the powerful high level

functions, the master program is very short:

function [t,xmean]=mcs_master(num_slaves);
……….
% parameters
num_runs = 1000;
t0 = 0; tf = 2; h = 0.001;
t=t0:h:tf; % returned time values
x0 = [0;0.1]; % initial conditions

% generate damping factors
d = 800 + 400 * rand(num_runs,1);

% start up slaves
slaves=dpspawn(num_slaves,Try,mcs_slave);

% distribute damping factors
% and simulation parameters
dpscatter(slaves,d);
dpsend(slaves,[t0,tf,h,x0']);
% gather results
xmean = mean(dpgather(slaves));

 47 Dezember 2003

SIMULATION NEWS EUROPE

C
O

M
P

A
R

IS
O

N
S

Is
s
u
e
 3

8
/3

9

The whole code for the slave program is even
shorter:

function mcs_slave()
………….
% receive damping factors and simulation
% parameters
d = dprecv; par = dprecv;
t0=par(1); tf=par(2);h=par(3);x0=par(4:5)';

% perform partial monte carlo study
global D;
xmean = 0;
for i = 1:length(d)
 D = d(i);
 x = rk4('mcs_equ',t0,tf,x0,h);
 xmean = xmean + x(:,2) / length(d);
end

% send result to master
dpsend(dpparent,xmean);

After all, the implementation of the parallel pro-
gram took a few more time than the implementation of
the serial program.

For all calculations, the RK4-algorithm with an in-
tegration stepsize of h=0.001 was used. The table be-
low shows the speedup factor f for a different number
of processors M.

M 2 4 6 8

f 1.86 3.42 4.65 5.62

The reasons of the relatively low speedup values
are the start-up times of the slave processes. Be-
cause for every slave one MATLAB instance has to be
started, which takes up to 10 seconds to start up, this
factor must be considered in small sized problems.

Task b: coupled predator-prey population. The
five populations were distributed to five slave proc-
esses controlled by a master process. The master it-
self starts the slaves, sends the initial values towards
them and finally collects the results.

Calculations were proceeded with the RK4-
algorithm using an integration stepsize of h=0.01. The
following table shows the speedup factor depending
on different communication intervals cint.

cint h 2h 5h 10h 20h
f 0.13 0.22 0.37 0.48 0.56

As the table shows, communication was not suc-
cessful. The reason for these negative results is the
tight coupling between the differential equations lead-
ing to relatively high communication times.

Task c: partial differential equation: The paral-
lelization of this example was also realized by a mas-
ter-slave program.

As in task b, the master program starts up the
slaves, distributes the parameters and collects the re-
sults from them. The slave processes exchange only
the boundary values of their simulated areas.

The following table shows the speedup factor f for
a different number of processors. RK4-algorithm with
stepsize h=0.005 and a number of lines N=800 was
used for all calculations.

M 2 4 6 8
f 0.29 0.2 0.16 0.15

The table shows, that at increasing processor
numbers speedup values will decrease. The reason
for this effect is the increasing number of simulated
areas and therefore the rise of boundaries where
simulation values will be exchanged. This leads to a
rising communication expense which can’t be com-
pensated by the decreasing calculation expense.

Conclusions: The examples show that paralleli-
zation using a cluster of workstations is not suitable
for every type of simulation. If there are more than one
simulation runs running independently, parallel proc-
essing can be successful and can be implemented
easily. On the other hand, if only one simulation run
must be done, parallelization is harder to implement
and conditionally successful.

To compare implementation times, the described
examples have been realized in C/PVM also. These
implementations took approximately four times longer
than developing under MATLAB/DP-Toolbox.

Hardware: All examples have been run on a clus-
ter of 8 workstations containing a 1500 MHz AMD
processor. The computers were coupled by a
switched Gigabit Ethernet.

Software: Linux operating system with the newest
version 1.5.0 DP-Toolbox (newest version) and MAT-
LAB (6.5).

.

