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C9 Fuzzy Control of a Two Tank System, SNE 17,
(7/96), asks for approaches and for 
implementations of modules for fuzzy control. 

  SP: support for fuzzy control, two-dimensional  
calculations for control surface, pure discrete  
approach possible 

C10 Dining Philosophers II, SNE 18 (11/96),  
reviews discrete simulators with respect to concur-
rent access to resources and with deadlocks. 

  SP: discrete random variables, simultaneous events, 
deadlock recognition 

C11 SCARA Robot, SNE 22 (3/98), deals with 
implicit and hybrid systems with state events.  

  SP: implicit model, different approaches for collision 
event and action 

C12 Collision of Spheres, SNE 27, November 1999, 
allows numerical or analytical analysis as well as 
continuous or discrete approaches 

  SP: broad variety of approaches (numerical - con-
tinuous, numerical – discrete, numerical – analyti-
cal, analytical – symbolic), collision limit 

C13 Crane Crab with Embedded Control, SNE 31
(3/01), revised SNE 35/36 (11/02) checks tech-
niques and features for embedded digital control 
with sensors and with DAE-systems 

  SP: implicit model, discrete control coupled with  
sensor diagnosis, complex experiments 

C14 Supply Chain, SNE 32/33 (11/2001), SNE 34
(7/2002) addresses discrete simulators - features 
for supply chain systems (messages, strategies) 

  SP: distinction between material flow and order flow, 
distance-dependent control strategies 

C15 Clearance Identification, SNE 35/36 (11/02), 
checks identification features (based on measured 
data) and influences of noise 

SP: identification algorithms, short-term input func-
tions (Dirac-like), support of statistics 

Solutions
We invite all readers to participate in these com-

parisons. Please, simulate the model(s) with any tool 
of your choice and send in a solution. A solution 
should consist of: a short description of the simulator, 
modelling technique, model description, and results of 
the three tasks. Additionally we ask for model sources 

The solution should fit into one page of SNE – 
templates are found at our web page. Solutions sent 
in are reviewed.  

Felix Breitenecker 
FFeelliixx..BBrreeiitteenneecckkeerr@@ttuuwwiieenn..aacc..aatt

A MATLAB – based Solution to 
ARGESIM “Comparison of Parallel 
Simulation Techniques” using a 
DP-Toolbox 
R. Fink, S. Pawletta, T. Pawletta, University of 
Applied Science Wismar, Germany 

rr..ffiinnkk@@ssttuudd..hhss--wwiissmmaarr..ddee

Simulator: MATLAB is a widely used tool for rapid 
prototyping in engineering sectors. One big disadvan-
tage of MATLAB is the lack of parallel processing fea-
tures. To overcome this disadvantage, several tools 
were developed expanding MATLAB by those fea-
tures. One of these tools is the DP-Toolbox, where DP 
stands for distributed and parallel.  

The DP-Toolbox was developed from 1995 until 
1999 at the University of Rostock and since 2002 at 
the University of Applied Science Wismar. Communi-
cation and synchronisation is done via message pass-
ing using the software package PVM (Parallel Virtual 
Machine). The DP-Toolbox consists of two levels: DP-
High and DP-Low. At the DP-Low level, PVM func-
tions were mapped to MATLAB functions using MAT-
LAB’s MEX interface. At the DP-High level, low level 
functions will be bundled into easy to use high level 
functions. The toolbox was mainly developed for Unix 
platforms, where older versions (1.4.x) also support 
Win32 systems.  

Task a: Monte Carlo study: All simulation runs 
can be performed independently. Therefore, the basic 
idea is to distribute the runs to the available proces-
sors. Since the single simulation runs took similar 
times, static load balancing was used. For balancing 

the load statically only one DP-High function (dps-
catter) was needed. Due to the powerful high level 

functions, the master program is very short: 

function [t,xmean]=mcs_master(num_slaves); 
……….
% parameters 
num_runs   = 1000; 
t0 = 0; tf = 2; h  = 0.001;      
t=t0:h:tf; % returned time values 
x0 = [0;0.1]; % initial conditions

% generate damping factors 
d = 800 + 400 * rand(num_runs,1); 

% start up slaves 
slaves=dpspawn(num_slaves,Try,mcs_slave);

% distribute damping factors 
% and simulation parameters 
dpscatter(slaves,d);
dpsend(slaves,[t0,tf,h,x0']);
% gather results 
xmean = mean(dpgather(slaves)); 
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The whole code for the slave program is even 
shorter:

function mcs_slave() 
………….
% receive damping factors and simulation
% parameters 
d   = dprecv; par = dprecv;
t0=par(1); tf=par(2);h=par(3);x0=par(4:5)'; 

% perform partial monte carlo study 
global D; 
xmean = 0; 
for i = 1:length(d) 
      D = d(i); 
      x = rk4('mcs_equ',t0,tf,x0,h); 
      xmean = xmean + x(:,2) / length(d); 
end

% send result to master 
dpsend(dpparent,xmean);

After all, the implementation of the parallel pro-
gram took a few more time than the implementation of 
the serial program. 

For all calculations, the RK4-algorithm with an in-
tegration stepsize of h=0.001 was used. The table be-
low shows the speedup factor f for a different number 
of processors M.

M 2 4 6 8 

f 1.86 3.42 4.65 5.62 

The reasons of the relatively low speedup values 
are the start-up times of the slave processes. Be-
cause for every slave one MATLAB instance has to be 
started, which takes up to 10 seconds to start up, this 
factor must be considered in small sized problems. 

Task b: coupled predator-prey population. The 
five populations were distributed to five slave proc-
esses controlled by a master process. The master it-
self starts the slaves, sends the initial values towards 
them and finally collects the results.  

Calculations were proceeded with the RK4-
algorithm using an integration stepsize of h=0.01. The 
following table shows the speedup factor depending 
on different communication intervals cint.

cint h 2h 5h 10h 20h 
f 0.13 0.22 0.37 0.48 0.56 

As the table shows, communication was not suc-
cessful. The reason for these negative results is the 
tight coupling between the differential equations lead-
ing to relatively high communication times. 

Task c: partial differential equation: The paral-
lelization of this example was also realized by a mas-
ter-slave program.  

As in task b, the master program starts up the 
slaves, distributes the parameters and collects the re-
sults from them. The slave processes exchange only 
the boundary values of their simulated areas.  

The following table shows the speedup factor f for 
a different number of processors. RK4-algorithm with 
stepsize h=0.005 and a number of lines N=800 was 
used for all calculations. 

M 2 4 6 8 
f 0.29 0.2 0.16 0.15 

The table shows, that at increasing processor 
numbers speedup values will decrease. The reason 
for this effect is the increasing number of simulated 
areas and therefore the rise of boundaries where 
simulation values will be exchanged. This leads to a 
rising communication expense which can’t be com-
pensated by the decreasing calculation expense. 

Conclusions: The examples show that paralleli-
zation using a cluster of workstations is not suitable 
for every type of simulation. If there are more than one 
simulation runs running independently, parallel proc-
essing can be successful and can be implemented 
easily. On the other hand, if only one simulation run 
must be done, parallelization is harder to implement 
and conditionally successful. 

To compare implementation times, the described 
examples have been realized in C/PVM also. These 
implementations took approximately four times longer 
than developing under MATLAB/DP-Toolbox. 

Hardware: All examples have been run on a clus-
ter of 8 workstations containing a 1500 MHz AMD 
processor. The computers were coupled by a 
switched Gigabit Ethernet. 

Software: Linux operating system with the newest 
version 1.5.0 DP-Toolbox (newest version) and MAT-
LAB (6.5). 

.


