
Comparison of Parallel Simulation Techniques

Workstation Cluster I MATLAB I PSI

MATLAB is a general tool for mathematical and
engineering calculations and visualisations. It is very
well known and widely in use. Therefore a comprehen­
sive introduction is not necessary. Although MATLAB
is not a special simulation tool it is often used for small
and medium simulation problems. In spite of its excel­
lent features there are some lacking capabilities. One is
distributed and parallel processing. In similar tools like
Matrixx and CTRL-C we find the same lack, too. In
order to overcome this lack some investigations were
done at the University of Rostock and at the Fachhoch­
schule Wismar. By the authors the C++ class library
PSILIB for transport independent interprocess commu­
nication and process control between heterogeneous
platforms was developed. This library considers not
only standard UNIX derivatives, but also real time
operating systems like OS9 and Lynx OS . On top of this
library common engineering standard tools with a C
interface can be extended to programming environ­
ments for distributed and parallel applications.
MATLAB performs this with its MEX interface. Today,
there are of course a number of communication libraries
with wider distribution , which can be used in the same
way. A much more serious problem is the construction
of a high level and easy to use interface within
MATLAB to access a communication library via the
MEX interface. We examined the two logical ap­
proaches shared and distributed memory. Physically
both are implemented by message passing. For solving
the tasks of this comparison we used the "Distributed
Memory Interface" . To give an impression of the inter­
face handling the M-Code for the Monte-Carlo study is
discussed in greater detail.

All test examples have been run on a cluster of 20
SUN Classic workstations under Solaris 2 connected
via Ethernet (10 MbiUs) . Static load balancing was used
exclusively.

a) Monte-Carlo Simulation: Only a task division
into subtasks producing equal load is useful. That means
for 1000 parameter variations 2, 4, 5, 8, 10, ... subtask
are suitable. As can be seen in the table below, the
resulting speed-up factor/ grows almost linear with the
number of subtasks M .

M 2 4 5 8 10

f 2.00 3.99 4.99 7.96 9.92

Due to the possible mixture of programming and
interactive/interpretative execution in MATLAB the

Number 13, March 1995 - p38 -

necessary time expenditure for implementing and te­
sting a problem solution is very small compared with
compilation based approaches like C or FORTRAN
programming. The supported matrix oriented notation
leads to short and compact code, how the example
M-Function exl () for the Monte-Carlo study shows.

function [xmean]=exl(dd)
tO=O; tf=2; h=0 . 001 ; xO=[O 0.1]';
global d
xmean=zeros((tf-tO) /h+l,l);
for i=l:length(dd)

x=rk4('mass_spring' ,tO,tf,h,xO);
xmean=xmean+x(:,2) / l ength(dd);

end
return

The experiment is carried out by simply typing the
following lines.

dd=800+400*rand(l000,l);
x=exl (dd);
plot (X);

As a first attempt we can try a parallel solution in the
same manner. After starting nslaves MATLAB in­
stances and generating damping factors, one column of
the random matrix is put to each slave.

n slaves=lO;
slaves=spawn(nslaves);
dd=800+40 0*rand(l000/nslaves,nslaves);
for i =l:nslaves

put(slaves(i),dd(:,i))
end

Now each slave can settle its part of the whole task
and the interactive experiment is finished by putting
back the results from the slaves and calculating the
average response .

aeval(slaves, 'x=exl(dd); ')
x=O;
f or i=l:nslaves

x=x+putback(slaves(i), 'x')/nslaves;
end
plot (x);

The experiment above is done in a parallel fashion
without any programming! From such a successful test
it is a close step to a real master/slave program .

Master M-File:

nslaves=lO;
slaves=spawn(nslaves, 'exl_slave');
dd=800+400*rand(1000/nslaves,nslaves);
for i=l:nslaves

put(slaves(i) ,dd(:,i))
end
x=O;
for i=l:nslaves

x=x+get(s l aves(i)) /ns laves;
end
plot(x)

Slave M-File:

dd=get;
put (-1, exl (dd))

Sometimes the SPMD (single program multiple
data) paradigm is preferred. Although it is not particu­
larly suitable in this example, because the problem is
logically structured in a master/slave manner, it saves
one processor for the same degree of parallelism.

EUROSIM - Simulation News Europe

SPMD M-File:

n=lO;

if parent
ids=myid;
ids(2:n)=spawn(n- l, 'exl_spmd');

put(ids(2:n),ids))
dd=800+400*rand(l000/n,n);

for i=2:n
put(ids(i),dd(:,i)

end
dd=dd(: '1)

else %child
ids=get;
dd=get;

end

x=exl(dd)/n;

if parent
for i=2 : n

x=x+get(ids(i));
end
plot(x)

else %child
put(ids(l),x)

end

b) Coupled predator-prey population: The SP­
MD paradigm was used and all five tasks were located
on different processors. The communication interval
was varied from Cint=h to Cin1=20h.

Cint h 2h 5h !Oh 20h

f 0.70 0.98 1.90 2.77 3.71

Speed-up factors greater than one are not reached
until Cint is greater than 2h.

c) Partial differential equation: The task was sol­
ved with a discretisation into N=800 lines using the
SPMD paradigm. At first the number of parallel tasks
M was varied from 2 to 16.

7 I l.~3 I 3 .~7 I 3.~0 I 5.~l I 5
1
~6 I 1

1
~1

Then the communication interval was increased for
M=8 tasks .

Cinr h 2h 4h 6h 8h

f 5.01 5.71 6.24 6.48 6.54

One reason for the relatively high speed-up factors
compared with other solutions in this series is the slow
implementation of the RK4 algorithm. Because there is
no RK4 with fixed stepsize in MATLAB, it was imple­
mented for the comparison in M-Code. The time needed
by an experienced MATLAB user for implementing
and testing the parallel versions with the "Distributed
Memory Interface" is nearly the same as for the serial
solution. Principles of the "Shared Memory Interface"
and performance tests of both interfaces using PVM as
alternative communication library will be published in
the near future .

S. Pawletta, W. Drewelow, Inst. of Automatic Control,
University of Rostock, D-18051 Rostock;
T. Pawletta, Chair of Applied Computer Science, F ach­
hochschule Wismar, D- 23968 Wismar
Email: sven.pawletta@etechnik. uni-rostock. de

DSP Systems for Real-Time Control

The Real-Time Interface (RT/) allows the completely automatic implementation and
real-time testing of SIMULINK models on dSPACE high-speed DSP systems. It modifies
source code coming from The MathWorks Real-Time Workshop for real-time

. execution, adds application specific setups and loads it to the DSP immediately.
Without re-generating code, block-diagram parameters can be changed by SIMULINK
in order to affect directly the application running on the DSP. The Real-Time Interface is
available for all dSPACE floating-point DSP boards on PC/ATs, Sun" ' SPARC"', and HP™
90001700 workstation platforms.

EUROSJM - Simulation News Europe - p39 -

Development Hardware
Build affordable powerful hardware-in­
the-loop simulation systems with fast DSP
and full line of 1/0 interfaces. With up to
50 MFlops per DSP plus parallel ization
options you will never run out of speed
again.

Development Software
Create your controller with state-of-the-
art design and simulation tools MATLAB'" I
SIMULINK'". Interfaces and code generators
produce executable real-t ime code.

Time histories of variab les in the DSP
program can be analysed in real-time.
Changing parameters, transferring reference
signals and DSP monitoring are easy and
efficient.

dSPACE ,,,
dSPACE GmbH · Technologiepark 25
D-33100 Paderborn Germany
phone-++49 5251 1638-0 ·
fax ++49 525 i 66529

Number 13, March 1995

