
Comparison of Parallel Simulation Techniques
Cogent XTM I Linda, C

In this series of comparisons a solution with the
simulation system mosis on the Cogent X1M has been
described (SNE 11). mosis is a general purpose CSSL
simulation language with special multiprocessing fea­
tures. In this article a solution directly programmed in
C using the communication system Kernel Linda on the
Cogent X1M will be shown:

The Cogent X1M is a workstation consisting of up
to 32 transputers T800 under a distributed UNIX-like
operating system called QIX, featuring parallel proces­
sing (even the operating system kernel is distributed
over the network) and PIX, a PostScript input/output
system with possibility to run X Window applications.
As a communication standard Kernel Linda being a
derivate of Linda is used, even for system process
communication. Each transputer works with 20 MHz
and is equipped with 4 MB of local memory. The main
console (the minimum configuration) of a X1M work­
station consists of two transputers that are linked to the
graphical I/O system and that control the hard disk
access . This system can be expanded to a maximum
number of 32 by connecting to a "resource server"
containing up to 15 boards with 2 transputers each. For
inter-processor communication two different media can
be used : Usually messages are sent via the transputer­
unique so-called "Links" (serial , 20 MBit/s transfer
rate) . For short messages a very fast bus system is
installed.

Description of Linda: Linda is a programming
model for parallel algorithms that was initially deve­
loped by David Gelernter at Yale University . In this
model, all processes communicate with each other by
accessing a common "tuple space" which is logically
like reading from a shared memory area, but physically
implemented by message passing. A message can be
sent to another process by putting a "tuple" into the
tuple space (function "out") that can be read by any
other process that has access to this tuple space ("in"
reads the tuple and deletes it; "rd" reads the tuple
without destroying it) . The tuple contains an identifier
(usually a name or an integer number) and a data area.

Within the tuple space several tuples with the same
identifie~ may be defined. In this case, at the "rd" or "in''
operation that was written first, is read . All tuples with
the same identifier are located in a FIFO queue, which
can be also used for message passing.

Kernel Linda is an implementation of this program­
ming paradigm by Cogent Research for the Cogent

X1M where the source files of parallel programs need
not be passed through a preprocessor.

Solution of the Comparison Examples

All tasks were solved by using the Runge-Kutta
fourth order algorithm, with fixed stepsizes, depending
on the particular problem. All floating-point variables
were defined as "double". For the solutions the "shared
memory" approach combined with the usage of FIFO
queues for tuples with the same identifier was used.

Each task was programmed in a serial fashion which
was executed on one single processor and in a parallel
version using several concurrent processors . In exam­
ples 1 and 3, only eight slave processors were used for
comparability to the other solution given in this series
(workstation cluster connected with PVM, SNE 10).

The solution for the Monte Carlo Study uses a
master-slave approach with dynamic load balancing (in
contrary to the PVM and mosis solutions that use static
load balancing) as this can be programmed in Linda in
a very elegant way. This means that when one processor
has finished one simulation run, it can immediately start
with the next one (using a different parameter value) .
At the main processor, after creation of several (eight)
similar processes on different processors, the desired
number of random numbers is created and written into
a FIFO queue in the current tuple space. Each processor
reads (and deletes) one tuple and performs the simula­
tion run. As soon as this has completed, the next tuple
is fetched until no value can be found in the queue. Then
the sum of all simulation runs within this processor is
evaluated and sent to the main task (by putting into the
tuple space) which calculates the average of all runs .
The following figure illustrates the distribution of tasks:

main
processor

As a calculation base, 1000 simulation runs were
performed by 8 slave processors. The achieved speed­
up factor wasf= 7 .8 . For this homogenous system, static
load balancing would probably produce similar results .

The distributed simulation of the Coupled Preda­
tor-Prey model resulted in a "speed-up" factor of less
than one, i.e. the parallel version was significantly

Number 12, November 1994 - p34 - EUROSIM - Simulation News Europe

slower than the serial one. Communication is done via
"global variables" (tuples in the environment) contai­
ning the current state of the coupled model. The five
tasks representing the various populations were simu­
lated on different processors.

The resulting "speed-up" factor was /=0.08 which
could be improved to f=0 .60 by communicating only
each !Oth integration interval h (Cin1=l0 .h). This prob­
lem seems to be not yet suitable for parallel processing
with distributed memory , shared memory structures
may give better results .

The third test example, the parallelization of the
partial differential equation (PDE) proved again to
succeed in tenns of calculation speed . The model was
calculated using N=600 and N=800 discretisation lines
for the PDE; the latter produced even better speed-up
factors. The model was simulated in the same way as
in the solution on a workstation cluster under PVM
(SNE 10, p.24) with eight concurrent processors (each
calculating 75 or 100 lines of the PDE) and produced
speed up factors summarized in the following table.

#Lines I communication Ci111 = h Cint = 4 h

•
•
•

•

N=600 f = 6,78 f = 7.54

N= 800 f = 6,88 f = 7.62

.. ,n ... -- -~-....
-l.:I •

Fully integrated submodel capability simplifies
the simulation of complex systems.
Elegant constructs support simple descriptions
and efficient processing of discontinuities.
Powerful mouse/menu controlled graphical
interface creates system block diagrams,
generates error-free simulation models, executes
the simulation, and displays graphical results.
Real-time distributed simulation.

Communicating only each fourth integrating step
improved the results up to an almost linear speed-up.

Summary of the Results: The solutions directly pro­
grammed in C and Kernel Linda produce slightly better
results than those programmed in C and PVM on an
RS6000-cluster and those on the Cogent XTM using
mosis ; on one side this is because the ratio of communi­
cation by calculation speed is higher than on the worksta­
tion cluster (faster communication, slower calculation), on
the other side the C-programs do not have to poll for
incoming messages (which makes the simulation with
mosis slower, but which will be improved).

But the advantage in simulation speed must be paid
by much higher development cost: A mosis model
needs only be compiled and run on the parallel compu­
ter system, but the implementation of this model took
quite a long time (approx. one week for implementati­
on, testing and simulation), although the existing PVM
models could be used and had only to be transformed
to Linda programs.

G. Schuster, F. Breitenecker, ARCE Simulation
News, c/o Dept. Simulation Techniques, TU Vienna,
Wiedner Hauptstr. 8-10, A-1040 Vienna, Austria,
Email: argesim@simserv.tuwien.ac.at.

ESL -THE LANGUAGE OF SIMULATION

Over ten years development maturity makes ESL THE
language of simulation for simple or advanced applications.

Developed to meet the simulation requirements of the
European Space Agency: used by such leading companies
as British Gas, Lucas Aerospace, BNFL, British Aerospace.

ESL offers a full range of simulation facilities. Whatever the
system or process, if it can be modelled, it can be simulated
by ESL. Its features include:

•
•
•
•

Post-simulation graphics display package.
Interpretive running for testing, or compiled
FORTRAN for optimum speed .
Eight integration algorithms, including improved
Gear/Hindmarsh methods.
Hardware supported includes: IBM-PC, SUN,
Silicon Graphics, HP, IBM RS/6000, and DEC
Unix workstations; VAX workstations, Encore
Unix systems .

ISIM International Simulation Limited
Technology House, Lissadel Street, SALFORD M6 6AP, England. Tel: +44 (0)61 745 7444, Fax: +44 (0)61 737 7700

El~El[ii]]
EUROSIM - Simulation News Europe

INTERNATIONAL
SIMULATION
LIMITED

- p35 - Number 12, November 1994

mailto:argesim@simserv.tuwien.ac.at

