
Comparison of Parallel Simulation Techniques 
Cogent XTM I Linda, C 

In this series of comparisons a solution with the 
simulation system mosis on the Cogent X1M has been 
described (SNE 11). mosis is a general purpose CSSL 
simulation language with special multiprocessing fea­
tures. In this article a solution directly programmed in 
C using the communication system Kernel Linda on the 
Cogent X1M will be shown: 

The Cogent X1M is a workstation consisting of up 
to 32 transputers T800 under a distributed UNIX-like 
operating system called QIX, featuring parallel proces­
sing (even the operating system kernel is distributed 
over the network) and PIX, a PostScript input/output 
system with possibility to run X Window applications. 
As a communication standard Kernel Linda being a 
derivate of Linda is used, even for system process 
communication. Each transputer works with 20 MHz 
and is equipped with 4 MB of local memory. The main 
console (the minimum configuration) of a X1M work­
station consists of two transputers that are linked to the 
graphical I/O system and that control the hard disk 
access . This system can be expanded to a maximum 
number of 32 by connecting to a "resource server" 
containing up to 15 boards with 2 transputers each. For 
inter-processor communication two different media can 
be used : Usually messages are sent via the transputer­
unique so-called "Links" (serial , 20 MBit/s transfer 
rate) . For short messages a very fast bus system is 
installed. 

Description of Linda: Linda is a programming 
model for parallel algorithms that was initially deve­
loped by David Gelernter at Yale University . In this 
model, all processes communicate with each other by 
accessing a common "tuple space" which is logically 
like reading from a shared memory area, but physically 
implemented by message passing. A message can be 
sent to another process by putting a "tuple" into the 
tuple space (function "out") that can be read by any 
other process that has access to this tuple space ("in" 
reads the tuple and deletes it; "rd" reads the tuple 
without destroying it) . The tuple contains an identifier 
(usually a name or an integer number) and a data area. 

Within the tuple space several tuples with the same 
identifie~ may be defined. In this case, at the "rd" or "in'' 
operation that was written first, is read . All tuples with 
the same identifier are located in a FIFO queue, which 
can be also used for message passing. 

Kernel Linda is an implementation of this program­
ming paradigm by Cogent Research for the Cogent 

X1M where the source files of parallel programs need 
not be passed through a preprocessor. 

Solution of the Comparison Examples 

All tasks were solved by using the Runge-Kutta 
fourth order algorithm, with fixed stepsizes, depending 
on the particular problem. All floating-point variables 
were defined as "double". For the solutions the "shared 
memory" approach combined with the usage of FIFO 
queues for tuples with the same identifier was used. 

Each task was programmed in a serial fashion which 
was executed on one single processor and in a parallel 
version using several concurrent processors . In exam­
ples 1 and 3, only eight slave processors were used for 
comparability to the other solution given in this series 
(workstation cluster connected with PVM, SNE 10). 

The solution for the Monte Carlo Study uses a 
master-slave approach with dynamic load balancing (in 
contrary to the PVM and mosis solutions that use static 
load balancing) as this can be programmed in Linda in 
a very elegant way. This means that when one processor 
has finished one simulation run, it can immediately start 
with the next one (using a different parameter value) . 
At the main processor, after creation of several (eight) 
similar processes on different processors, the desired 
number of random numbers is created and written into 
a FIFO queue in the current tuple space. Each processor 
reads (and deletes) one tuple and performs the simula­
tion run. As soon as this has completed, the next tuple 
is fetched until no value can be found in the queue. Then 
the sum of all simulation runs within this processor is 
evaluated and sent to the main task (by putting into the 
tuple space) which calculates the average of all runs . 
The following figure illustrates the distribution of tasks: 

main 
processor 

As a calculation base, 1000 simulation runs were 
performed by 8 slave processors. The achieved speed­
up factor wasf= 7 .8 . For this homogenous system, static 
load balancing would probably produce similar results . 

The distributed simulation of the Coupled Preda­
tor-Prey model resulted in a "speed-up" factor of less 
than one, i.e. the parallel version was significantly 
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slower than the serial one. Communication is done via 
"global variables" (tuples in the environment) contai­
ning the current state of the coupled model. The five 
tasks representing the various populations were simu­
lated on different processors. 

The resulting "speed-up" factor was /=0.08 which 
could be improved to f=0 .60 by communicating only 
each !Oth integration interval h (Cin1=l0 .h). This prob­
lem seems to be not yet suitable for parallel processing 
with distributed memory , shared memory structures 
may give better results . 

The third test example, the parallelization of the 
partial differential equation (PDE) proved again to 
succeed in tenns of calculation speed . The model was 
calculated using N=600 and N=800 discretisation lines 
for the PDE; the latter produced even better speed-up 
factors. The model was simulated in the same way as 
in the solution on a workstation cluster under PVM 
(SNE 10, p.24) with eight concurrent processors (each 
calculating 75 or 100 lines of the PDE) and produced 
speed up factors summarized in the following table. 

#Lines I communication Ci111 = h Cint = 4 h 

• 
• 
• 

• 

N=600 f = 6,78 f = 7.54 

N= 800 f = 6,88 f = 7.62 

.. ,n ... -- -~-.... 
-l.:I • 

Fully integrated submodel capability simplifies 
the simulation of complex systems. 
Elegant constructs support simple descriptions 
and efficient processing of discontinuities. 
Powerful mouse/menu controlled graphical 
interface creates system block diagrams, 
generates error-free simulation models, executes 
the simulation, and displays graphical results. 
Real-time distributed simulation. 

Communicating only each fourth integrating step 
improved the results up to an almost linear speed-up. 

Summary of the Results: The solutions directly pro­
grammed in C and Kernel Linda produce slightly better 
results than those programmed in C and PVM on an 
RS6000-cluster and those on the Cogent XTM using 
mosis ; on one side this is because the ratio of communi­
cation by calculation speed is higher than on the worksta­
tion cluster (faster communication, slower calculation), on 
the other side the C-programs do not have to poll for 
incoming messages (which makes the simulation with 
mosis slower, but which will be improved). 

But the advantage in simulation speed must be paid 
by much higher development cost: A mosis model 
needs only be compiled and run on the parallel compu­
ter system, but the implementation of this model took 
quite a long time (approx. one week for implementati­
on, testing and simulation), although the existing PVM 
models could be used and had only to be transformed 
to Linda programs. 
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ESL -THE LANGUAGE OF SIMULATION 

Over ten years development maturity makes ESL THE 
language of simulation for simple or advanced applications. 

Developed to meet the simulation requirements of the 
European Space Agency: used by such leading companies 
as British Gas, Lucas Aerospace, BNFL, British Aerospace. 

ESL offers a full range of simulation facilities. Whatever the 
system or process, if it can be modelled, it can be simulated 
by ESL. Its features include: 

• 
• 
• 
• 

Post-simulation graphics display package. 
Interpretive running for testing, or compiled 
FORTRAN for optimum speed . 
Eight integration algorithms, including improved 
Gear/Hindmarsh methods. 
Hardware supported includes: IBM-PC, SUN, 
Silicon Graphics, HP, IBM RS/6000, and DEC 
Unix workstations; VAX workstations, Encore 
Unix systems . 

ISIM International Simulation Limited 
Technology House, Lissadel Street, SALFORD M6 6AP, England. Tel: +44 (0)61 745 7444, Fax: +44 (0)61 737 7700 

El~El[ii]] 
EUROSIM - Simulation News Europe 

INTERNATIONAL 
SIMULATION 
LIMITED 

- p35 - Number 12, November 1994 

mailto:argesim@simserv.tuwien.ac.at

