Comparison of Parallel Simulation Techniques
Multiprocessor System with Physically
Distributed Memory / CPSS

CPSS (continuous parallel simulation system) is a
prototype of a continuous dynamic system simulation
tool on multiprocessor systems with physically dis-
tributed memory developed at the University of Mag-
deburg. The concept of CPSS includes the modular
development of simulation models, splitting of complex
models into several smaller submodels, connecting sub-
models, mapping them on processor nodes and simu-
lating submodels simultaneously, with some CSSL
standard features. CPSS has been developed in the pro-
gramming language C based on the extended model inter-
connection concept. This concept is an extension of the
model interconnection concept introduced by Schuster/
Breitenecker (mosis User’s Guide, TU Vienna, 1994).

Basics: The problem when parallelizing with the model
interconnection concept is the compromise between obtai-
ning a good speed-up factor and the precision of the simula-
tion results. The numerical inaccuracies occur if function
values for the integration algorithm are needed from other
submodels within the communication interval (between two
communication points). These intermediate values cannot be
exactly calculated. There are two ways for their calculation:
using the function values from the last communication point
(hold constant) or the intermediate values can be extra(inter)po-
lated from the function values of e.g. the two last communication
points (linear extra(inter)polation only with the available functi-
on values).

The goal of the extended model interconnection concept is to
reduce the numerical inaccuracies when calculating the needed
function values within a communication interval. Therefore the
following is required:

* Three parameter values are sent at the communication
point: function value y, the simulation time # at which this
value is calculated and additionally the first derivative .
The exchange of these parameters must be split into two
communication instructions. First of all the function va-
lues and the simulation time had to be exchanged at the
communication point. After this the right sides of the
differential equations were evaluated to get the appropria-
te derivatives. Only now the first derivatives can be sent.
The intermediate values can now be calculated from the
available function values y and their first derivatives e.g.
with the Hermite interpolation algorithm.

This concept was examined in CPSS for three explicit
integration algorithms: Euler, Heun and RK4.

Hardware: Two available multiprocessor systems with
physically distributed memory at University of Magdeburg
were used as hardware platforms, GC/PowerPlus and the
GCel 2/128 by Parsytec. GCel is a parallel system based on
T805 transputers with PARIX operating system. The GC/PP
also uses PARIX as the operating system (the same program
development environment), but the hardware architecture is

different. The GC/PP processor node architecture consists of
two PowerPC-601 microprocessors and four T805 transpu-
ters. The speed-up factors for the three simulation examples
explained in this article are results of the GCel 2/128.

Implementation: CPSS consists of two separate modu-
les, the command interpreter and the simulation kernel. The
interpreter (user interface) provides functions for textual
inputs/outputs and graphical outputs (post run). The simula-
tion runs can be controlled interactively by command inputs
with the interpreter (e.g. setting and displaying parameter
values at run time). The simulation kernel contains all neces-
sary functions for the parallel simulation, e.g. several integra-
tion algorithms; synchronisation mechanisms for submodels
(function library). The communication of the two modules is
carried out via a defined TCP/IP connection (socket).

For a simulation study the user generates a specific model
description file in the programming language C based on a
developed parallel model structure (static partitioning and
mapping). The model description file can contain several
submodel definitions, each with their own specific model
structure. Each submodel will be simulated on a defined
processor node and can be connected to any other submodel
via unidirectional links. At each communication point the
parameter values are interchanged between corresponded
submodels. The model description file has to be compiled and
linked with the simulation kernel to an executable file. It can
be run on the multiprocessor system.

Monte-Carlo study: In this example the 1000 simu-
lation runs are distributed on available processor nodes.
The simulation runs can be simulated simultaneously
without communication between them, for that reason
a good speed-up factor is expected. In order to solve the
distribution problem the master-slave approach can be
used in CPSS. The master-processor calculates the ran-
dom numbers of the damping factor d and sends them
to the slave-processors. Each slave-processor performs
one simulation run with a specific damping factor d. If
a slave-processor has finished one simulation run, it
communicates with the master to receive a new damp-
ing factor d for the next simulation run. In Table 1 the
obtained results (speed-up factors f) are presented for
various numbers of slave-processors.

4
3.98

8
7.92

16
15.6

slave processor nodes
speed-up factor f

The 1000 simulation runs were executed in the time
interval [0,2] with the step width h=0.002 and using RK4.

Coupled predator-prey population: Five popula-
tions are described in this predator-prey system, which
are tightly coupled. For the parallelization of this sys-
tem the five populations are distributed on two proces-
sor nodes, therefore one processor node calculates three
and the other node simulates two populations (h=0.01,
communication interval cint=h=0.01, RK4). Such a
distributed simulation did not bring any success. The
simulation on two nodes was significantly slower than
in the serial case (speed-up factor f= 0.3). This is due

Number 19, March 1997

- 46 -

EUROSIM - Simulation News Europe





mailto:hohmann@informatik.uni
mailto:hanf@es.uni-magdeburg.de



