
Comparison of Parallel Simulation Techniques

ACSL
Shared Memory Multiprocessors/UNIX

Shared memory multiprocessors hold great potential
for improvement of simulation execution times, owing
to zero-latency communication and the absence of a
need to encapsulate or otherwise prepare data for trans­
mission. Owing to its FORTRAN heritage, ACSL relies
heavily on static data, i.e. data not kept on a stack. It is
not possible to create instances of ACSL models dy­
namically at run-time. Thus, a thread-based implemen­
tation (where all processes share one address space) is
less appropriate than a true fork process based implemen­
tation with an explicitly allocated shared memory area.

We distribute the work among the processors (using
fork) by partitioning the equation set among the proc­
essors. Since the equations are not independent, the
values of the state variables must be exchanged from
time to time. Ideally, state variables would reside in the
shared memory segment and thus would be visible to
all processors immediately. ACSL does not allow state
variables to be placed at arbitrary memory locations;
thus, the programs must copy the state variables that are
to be shared into the shared memory segment. A further
difficulty arises because the processors of multiproces­
sor machines are not guaranteed to remain synchro­
nised. Consequently a synchronisation phase must be
executed during every update.

Two different types of synchronisation were tested:
one using operating system semaphores and one that
works exclusively in user mode. For this strategy to
work, all processes must be integrating at the same speed
- which is guaranteed by using fixed step algorithms.

A library (with two versions) was developed for
forking the processes and exchange data. The first ver­
sion of the library, the one using operating system
semaphores (S_LIB), consists of three user-visible pro­
cedures:

sbminitialize takes two parameters: the number
of processes to create - typically the number of proces­
sors in the machine - and the number of bytes a process
needs in shared memory. It returns a small integer
indicating the processor number this process is running
on; user code must later use this number to select the
appropriate right-hand sides of the differential equa­
tions. shmwriteread takes a vector of values to be
exchanged with the other processors and a vector where
the values calculated by pther processors are returned.
shmwriteread is typically called in the DYNAMIC
or DISCRETE SECTION, i.e. once per communication

interval or for each evaluation of the right-hand side of
the differential equations. shmterminate releases the
resources allocated by shminitialize. After
shmterminate, only the original process remains.

Besides needing the operating system to synchro­
nise, the above version suffers because it copies data
unnecessarily. The second version of the library
(F _LIB) avoids this copying completely by making the
shared memory area visible to the user's code. In case
of the HP Precision Architecture RISC machine (used
for these investigations, with four processors) the only
way to do this in FORTRAN is by passing the address
of the shared memory area as an actual parameter to
user-supplied subroutines.

The interface changes as follows: shminitialize
additionally takes two subroutine arguments. The first
is called when data is to be copied into the shared
memory segment, the second is called to read from the
shared memory segment. Instead of shmwriteread,
this second version of the library calls shmbarrier
(using subroutines made available in the shmin­
itialize function).

Monte Carlo-Study

The first version of the library was used to solve this
"Monte- Carlo Study" task. In the INITIAL SECTION
M parallel processes (procs) are forked with shmin­
i tialize performing 1000 IM simulation runs. No
data transfer is necessary during the simulation. In the
TERMINAL SECTION the results are read out by
shmwriteread. The following table shows the effi­
cieny factor f of the parallelisation.

INITIAL;
proc= sJ:unin~tialize(procs, resultnwn*4);
LOOP •• J. = J. + l; .•••.•.•••
END
DYNAMIC

DERIVATIVE;
TERMINAL;
call shmwriteread (procresults results)
if goto LOOP
call shmterminate;
END

M = l M=3 M=4
0.535 0.345 0.257

Partial Differential Equation

Discretising the PDE with the method of lines (with
N lines) results in a system of weakly coupled ordinary
differential equations (2N equations). Each process has
to integrate 2N IM equations, and data transfer is only
necessary between the boundary lines. The parallel
processes are forked in the INITIAL SECTION, the
data transfer takes place in the DYNAMIC section each
communication interval (c;,,1 = h, with S_LIB, F _LIB
in brackets):

EUROSIM - Simulation News Europe - p37 - Number 17, July 1996

INITIAL;
pr = sh.minitialize (procs, boundaries * 4)

[pr = sh.minit ialize (procs , boundaries ,
srupdate, sr read)]

END
DYNAMIC
DERIVATIVE;•.. • ••• • ; END
call sh.mwriteread (boundary = bound)

[call sh.mbarrier)
END
TERMINAL ; call shmterminate: END

Fourth order Runge-Kutta was used to integrate the
equations, which evaluates each equation four times per
integration step - whereas data is exchanged only once.
To eliminate the resulting discretisation error, shnlbar­
rier was called in the DERIVATIVE SECTION; sur­
prisingly, execution speed increased in some cases.

Results in term of the efficiency factor/for different
numbers of processors Mand different numbers oflines
N are summarised in the following tables:

N=800 M = l M=2 M=3 M = 4
S_LIB, DYN.S. 1 0.629 0.472 0.400
F LIB, DYN.S. I 0.578 0.450 0.342
F _LIB, DER.S. l 0.729 0.458 0.345

M=4 N=600 N=800 N = 1000

S_LIB, DYN.S. 0.439 0.400 0.375
F _LIB DYN.S. 0.361 0.342 0.322

F LIB, DYN.S. 0.357 0.342 0.319

Coupled Predator-Prey System

This task consists of only five pairs of equations that
are strongly coupled. As only four processors were
available, and the forked processes have to be of the
same structure, only three processors were used; each
processor calculating two pairs. Forking and data trans­
fer was done as in the PDE task.

Parallelisation is not successful. It turned out, that
the communication overhead is as big as the benefit of
parallelisation. If a communication interval c ·nr bigger
than the stepsize his chosen (cint =ah, a> J), ~ speedup
can be achieved. The systems remains stable until
c;111 = 20h. The following table summarises the results
for the efficiency factor/, where also a version with two
processors (each three pairs of models) was tested:

M=3 M=3 M=3 M=3 M=2
F_LIB F_LIB S_LIB F_LIB F_LIB
C\nl=h C;ni=2h C;nt=20h Ciot=20h C;ot=5h

I 0.943 0.917 0.806 0.813

K. Schwarz, F. Breitenecker, ARGESIM, Dept. of
Simulation Techniques, TU Vienna, Wiedner Hauptstr.
8-10, A-1040 Wien, Email: argesim@argesim.tuwien.
ac.at

Number 17, July 1996 - p38- EUROSilv1 - Simulation News Europe

mailto:argesim@argesim.tuwiell

