
Comparison of Parallel Simulation Techniques 

ACSL 
Shared Memory Multiprocessors/UNIX 

Shared memory multiprocessors hold great potential 
for improvement of simulation execution times, owing 
to zero-latency communication and the absence of a 
need to encapsulate or otherwise prepare data for trans­
mission. Owing to its FORTRAN heritage, ACSL relies 
heavily on static data, i.e. data not kept on a stack. It is 
not possible to create instances of ACSL models dy­
namically at run-time. Thus, a thread-based implemen­
tation (where all processes share one address space) is 
less appropriate than a true fork process based implemen­
tation with an explicitly allocated shared memory area. 

We distribute the work among the processors (using 
fork) by partitioning the equation set among the proc­
essors. Since the equations are not independent, the 
values of the state variables must be exchanged from 
time to time. Ideally, state variables would reside in the 
shared memory segment and thus would be visible to 
all processors immediately. ACSL does not allow state 
variables to be placed at arbitrary memory locations; 
thus, the programs must copy the state variables that are 
to be shared into the shared memory segment. A further 
difficulty arises because the processors of multiproces­
sor machines are not guaranteed to remain synchro­
nised. Consequently a synchronisation phase must be 
executed during every update. 

Two different types of synchronisation were tested: 
one using operating system semaphores and one that 
works exclusively in user mode. For this strategy to 
work, all processes must be integrating at the same speed 
- which is guaranteed by using fixed step algorithms. 

A library (with two versions) was developed for 
forking the processes and exchange data. The first ver­
sion of the library, the one using operating system 
semaphores (S_LIB), consists of three user-visible pro­
cedures: 

sbminitialize takes two parameters: the number 
of processes to create - typically the number of proces­
sors in the machine - and the number of bytes a process 
needs in shared memory. It returns a small integer 
indicating the processor number this process is running 
on; user code must later use this number to select the 
appropriate right-hand sides of the differential equa­
tions. shmwriteread takes a vector of values to be 
exchanged with the other processors and a vector where 
the values calculated by pther processors are returned. 
shmwriteread is typically called in the DYNAMIC 
or DISCRETE SECTION, i.e. once per communication 

interval or for each evaluation of the right-hand side of 
the differential equations. shmterminate releases the 
resources allocated by shminitialize. After 
shmterminate, only the original process remains. 

Besides needing the operating system to synchro­
nise, the above version suffers because it copies data 
unnecessarily. The second version of the library 
(F _LIB) avoids this copying completely by making the 
shared memory area visible to the user's code. In case 
of the HP Precision Architecture RISC machine (used 
for these investigations, with four processors) the only 
way to do this in FORTRAN is by passing the address 
of the shared memory area as an actual parameter to 
user-supplied subroutines. 

The interface changes as follows: shminitialize 
additionally takes two subroutine arguments. The first 
is called when data is to be copied into the shared 
memory segment, the second is called to read from the 
shared memory segment. Instead of shmwriteread, 
this second version of the library calls shmbarrier 
(using subroutines made available in the shmin­
itialize function). 

Monte Carlo-Study 

The first version of the library was used to solve this 
"Monte- Carlo Study" task. In the INITIAL SECTION 
M parallel processes (procs) are forked with shmin­
i tialize performing 1000 IM simulation runs. No 
data transfer is necessary during the simulation. In the 
TERMINAL SECTION the results are read out by 
shmwriteread. The following table shows the effi­
cieny factor f of the parallelisation. 

INITIAL; ...... . 
proc= sJ:unin~tialize(procs, resultnwn*4); 
LOOP •• J. = J. + l; .•••.•.••• 
END 
DYNAMIC 

DERIVATIVE; ........... . 
TERMINAL; .......... . 
call shmwriteread (procresults results) 
if .... goto LOOP 
call shmterminate; ........ . 
END 

M = l M=3 M=4 
0.535 0.345 0.257 

Partial Differential Equation 

Discretising the PDE with the method of lines (with 
N lines) results in a system of weakly coupled ordinary 
differential equations (2N equations). Each process has 
to integrate 2N IM equations, and data transfer is only 
necessary between the boundary lines. The parallel 
processes are forked in the INITIAL SECTION, the 
data transfer takes place in the DYNAMIC section each 
communication interval (c;,,1 = h, with S_LIB, F _LIB 
in brackets): 
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INITIAL; .... . .... . . 
pr = sh.minitialize (procs, boundaries * 4) 

[ pr = sh.minit ialize (procs , boundaries , 
srupdate, sr read) ] 

END 
DYNAMIC 
DERIVATIVE; . .... .•.. • ••• • ; END 
call sh.mwriteread (boundary = bound) 

[ call sh.mbarrier ) 
END 
TERMINAL ; call shmterminate: END 

Fourth order Runge-Kutta was used to integrate the 
equations, which evaluates each equation four times per 
integration step - whereas data is exchanged only once. 
To eliminate the resulting discretisation error, shnlbar­
rier was called in the DERIVATIVE SECTION; sur­
prisingly, execution speed increased in some cases. 

Results in term of the efficiency factor/for different 
numbers of processors Mand different numbers oflines 
N are summarised in the following tables: 

N=800 M = l M=2 M=3 M = 4 
S_LIB, DYN.S. 1 0.629 0.472 0.400 
F LIB, DYN.S. I 0.578 0.450 0.342 
F _LIB, DER.S. l 0.729 0.458 0.345 

M=4 N=600 N=800 N = 1000 

S_LIB, DYN.S. 0.439 0.400 0.375 
F _LIB DYN.S. 0.361 0.342 0.322 

F LIB, DYN.S. 0.357 0.342 0.319 

Coupled Predator-Prey System 

This task consists of only five pairs of equations that 
are strongly coupled. As only four processors were 
available, and the forked processes have to be of the 
same structure, only three processors were used; each 
processor calculating two pairs. Forking and data trans­
fer was done as in the PDE task. 

Parallelisation is not successful. It turned out, that 
the communication overhead is as big as the benefit of 
parallelisation. If a communication interval c ·nr bigger 
than the stepsize his chosen (cint =ah, a> J), ~ speedup 
can be achieved. The systems remains stable until 
c;111 = 20h. The following table summarises the results 
for the efficiency factor/, where also a version with two 
processors (each three pairs of models) was tested: 

M=3 M=3 M=3 M=3 M=2 
F_LIB F_LIB S_LIB F_LIB F_LIB 
C\nl=h C;ni=2h C;nt=20h Ciot=20h C;ot=5h 

I 0.943 0.917 0.806 0.813 
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