
Comparison of Parallel Simulation Techniques 

EUROSIM - Simulation News Europe features a 
series on comparisons of simulation software. Simula­
tion languages are compared in terms of their features 
for modelling and experimentation simple and 
easily comprehensible models drawn from a number of 
different application areas. This series on simulation 
software comparisons will be continued. 

This issue introduces a new type of comparison 
dealing with the benefits of distributed and parallel 
computation for simulation tasks. 

Three test examples have been chosen to investigate 
the types of parallelisation techniques best suited to 
particular types of simulation tasks. 

Each test example should be first solved in a serial 
fashion to provide a reference for the investigation of 
speed-up factors. The examples should then be tested 
using the parallel facilities (software and hardware) 
available. Performance should be assessed in terms of 
a numerical value found by dividing the time for serial 
solution by the time for the parallel solution (speed-up 
factor.{). Wherever appropriate. serial solutions should 
be based on the same environment. Measurements of 
time should be in terms of the total elapsed time for 
running the task. Information must be provided about 
the method of parallelisation or distribution of subtasks. 
If of interest. more than one solution for a particular test 
example may be offered. Furthermore, a rough indica­
tion should be provided for the program preparation 
time, especially for the parallel solution. 

This new type of comparison addresses users of all 
types of parallel and distributed facilities. The spectrum 
may range from simulation languages, via general pur­
pose programming languages, to special parallel lan­
guages and from networks of workstations, via special 
parallel computers, to very high performance computers. 

The objective is to make comparisons of different 
types of problems and of methods for the parallelisation 
of simulation tasks. It is not intended that this should 
involve direct comparisons of the (hardware) perfor­
mance of parallel facilities. 

Solutions for publication in EUROSIM- Simulation 
News Europe should not be more than one and a half 
page in length (see sample solution on page 24). Op­
portunities for the publication of more extended discus­
sions will be provided at the forthcoming EUROSIM 
Congress in Vienna where it is expected that there will 
be a special session on these comparisons of parallel 
techniques. Further details on the EUROSIM Congress 
may be found on page 23. 

The first test example is a Monte Carlo study. A 
damped second order mass-spring system is described 
by the equation 

mx(t) + kx(t) + dx(t) 0 

x(O) = 0 , x(O) 0.1 , k 9000 , m = 450 

where the damping factor d should be chosen as a 
random quantity uniformly distributed in the interval 
[800, 1200]. 

The task is to perform I OOO simulation runs and to 
calculate and store the average responses over the time 
interval [0,2.] for the motion x(t) for subsequent plotting. 

Figure I shows some simulation runs (using ACSL 
with RK4-algorithm with stepsize 0.001 ), 2 gives 
an example of the average response (calculated under 
PVM in the sample solution). 
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The second example is concerned with coupled 
predator-prey population models. Five predator-prey 
populations (vJ, v2), (wJ, w2), (xJ, x2), (y1,y2) and (zJ, 
z2) are interacting. The model equations are: 

i•1 =avv1-bvv1v2 Cvv1
2 

v2 = - dvv2 + evv1v2 + rv 
rv v2 (gvw1 + hvXI + jvy1 + kvZI) 

av 2, bv = 0.5, cv = 0.01, dv 0.2, ev 0.4, 
fv 0.02, gv = 0.01, hv = 0.02, }v = 0.01, kv 0.03 
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. b 2 WI =awWI wWIW2 CwW] + rw 
rw =WI (-gwV2 + hwX2) 
W2 - dwW2 + ewW1 W2 - f ww2

2 

aw =1, bw=0.5, cw= 0.02, dw 0.1, ew = 0.4, 
fw = 0.04, gw = 0.02, hw = 0.04 

. ') 

XI = axX! bxx1x2 CxX!~ + rx 
rx = -gxXl v2 

2 
i2 = - dxX2 + exX1x2 -f xX2 + Sx 
Sx=-hxX2WJ 

ax = 3, bx 0.9, Cx 0.02, dx 0.2, ex= 0.2, 
fx 0.04, gx 0.025, hx 0.1 

. b 2 YI = ayyJ - yY1Y2 CyYI + ry 
ry =YI (-gyV2 + hyZ2) 

2 y2 = - dyy2 + eyy1y2 - fyY2 
ay =1, by 0.8, cy 0.04, dy = 0.2, ey = 0.6, 
fy =0.07, gy 0.03, hy 0.025 

Zl = azZI 
2 

bzZ!Z2 CzZl + rz 
rz = -gzZJV2 
Z2 = - dzZ2 + ezZIZ2 + Sz 
Sz -hzZ2Yl 

az = 3, bz 0. 7, Cz = 0.02, dz = 0.5, ez = 0.3, 
fz 0.04, gz 0.02, hz 0.04 

All initial populations are normalized to 1. 

Figure 3 

The task is to solve the system within the time 
interval (0, 100] in a serial fashion and in an appropriate 
parallel fashion and to provide the terminal values of 
each population. Solutions obtained using ACSL in 
double precison are shown in fig. 3, the terminal values 
at t=lOO (stepsize 0.01, RK4-algorithm) and the equili­
brium solutions are shown in the following table. 
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• Pooulation t=lOO Equilibrium Difference 

VJ i 0.40494874 0.41235712 0.007408 
3.9389271 3.992722 

: 
0.053795 v2 ..... 

W[ 0.45572852 0.45765668 0.001928 
__ _l:l:'L__ 2.06389283 2.07652643 0.012634 

XJ 1.86489724 1.86502448 0.000127 

X2 3.18278282 3.18097946 0.001803 
~····· ·-

VJ 0.4677289 0.47392759 0.006199 

Y2 1.20213106 1.20497504 0.002844 

Zl 2.27700122 2.2773994 0.000398 

Z2 . 4.10808012 4.10656804 0.001512 

It is expected that with this example little or no 
improvement may be found through parallelisation. 
Negative results are of considerable interest and should 
not be discarded. 

The third example is based on a second order partial 
differential equation describing a swinging rope with 
length L fixed at one end and forced at the other. 

uxx(t,x) =a urt(x,t) 

u(O,t) = 0, u(l, t) = b e-dt sinrot, u(x,O) = ux(x,0) = 0 

Discretisation by the method of lines by dividing the 
length into N equidistant intervals and replacing the 
differential quotient uxx( t,x) by a central difference 
quotient results in a set of weakly coupled equations: 

2 .. 
k a Ui(t) = Ui-J(t) 2ui(t) + Ui+I(t) 'i = 1 .. ... , N-1; 

u;(O) = Ui(O) 0, uo(t) = u(O,t) = 0, 

b 
-dt . 

UN(t) u(L, t) = e smwt 

L =JO, a= 2, b = 1, d = 0.2, w = 1, k =LIN 

The task is to solve the system of equations with a 
discretisation N = 800 or more lines within the time 
horizon [O, 30] in a serial and in an appropriate parallel 
fashion. As result the lines atx=9UJO, x=3U4. x=U2, 
x =U4 and x=UJO should be stored for subsequent 
plotting. Figure 4 shows results for these lines calcula­
ted with ACSL with double accuracy (integration step­
size 0.005, RK4-algorithm). 

Figure 4 

EUROSIM - Simulation News Europe 


