

 25 July 2005

SIMULATION NEWS EUROPE

C
O

M
P

A
R

IS
O

N
S

Issu
e
 4

3

A Toolbox – based Solution to ARGESIM
Comparison C18 ‘Neural Nets / Transfer
Functions’ with MATLAB
Aleš Beli�, University of Ljubljana, Faculty of
Electrical Engineering; aalleess..bbeelliicc@@ffee..uunnii--lljj..ssii

Simulator: MATLAB 5.3 (wwwwww..mmaatthhwwoorrkkss..ccoomm)
with Neural networks toolbox, running on Debian
Linux 3.0 was used to solve this comparison.

Task a: Identification with linear dynamical
model: First identification with linear dynamical model
was tried. MATLAB arx function was used and 2nd or-
der discrete-time model was identified:

5985.0586.1

5206.05289.0
)(

12

2

	�

�
�

zz

zz
zG

0 2 4 6 8 10 12 14 16 18 20
�0.2

0

0.2

0.4

0.6

0.8

1

1.2

time(s)

fo
rc

e

0 2 4 6 8 10 12 14 16 18 20
�0.2

0

0.2

0.4

0.6

0.8

1

1.2

time(s)

fo
rc

e

Figure 1: Simulated (solid line) in compare with meas-

ured force (broken line). Training data set – above,
validation data set below.

Model simulation with respect to measured data is
presented in Figure 1. As can be seen, linear second
order model can describe the general system dynam-
ics; however, the details are not matched.

Task b: Identification with linear dynamical
model and the artificial neural network (ANN) in
parallel. For this task, features of the Neural Network
Toolbox were used.

In following MATLAB code, E represents the dif-
ference between real system’s measurements T and
linear model simulation y. Next, a network structure
net is created with 7 neurons on the first layer and 1
neuron on the output layer, and is trained according to
the system input P and target E. The network and the
linear dynamical model are then simulated in parallel
and the result of the hybrid system is shown in Fig. 2.
 E = T-y'; net = ...
 newff(minmax(P),[7,1],{'tansig','purelin'});
 net1 = train(net,P,E); y1 = sim(net1,P);
 plot(t,y+y1',t,T,'--')

0 2 4 6 8 10 12 14 16 18 20
�0.2

0

0.2

0.4

0.6

0.8

1

1.2

time(s)

fo
rc

e

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

time(s)

fo
rc

e

Figure 2: Simulation of the parallel structure of linear

dynamical model and the ANN (solid line) in
compare with measured force (broken line).

Training data set – above, validation data set - below.

Task c: Identification with dynamical ANN. The
following code shows again the use of the Neural
Network Toolbox, especially for the ANN model train-
ing. The results are shown in Figure 3.

 net = ...
 newff([0 1],[10,1],{'tansig','purelin'});
 net.layerconnect = [0 1;1 0];
 net.layerweights{1,2}.delays = [1,2];
 net.inputweights{1,1}.delays = [1,2];
 net.trainparam.epochs = 50;
 net.trainparam.show = 1;
 net2 = train(net,con2seq(P),con2seq(T));
 y2 = seq2con(sim(net2,con2seq(P)));

0 2 4 6 8 10 12 14 16 18 20
�0.2

0

0.2

0.4

0.6

0.8

1

1.2

time(s)

fo
rc

e

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

time(s)

fo
rc

e

Figure 3 Simulation of the neural network model (solid

line) in compare with measured force (broken line).
Training data set – above, validation data set - below.

C17 Classification: Toolbox-based CACSD
 Approach
Simulator: MATLAB 5.3 (Linux) wit Neural Net TB

