SIMULATION NEWS EUROPE

A Toolbox — based Solution to ARGESIM
Comparison C18 ‘Neural Nets / Transfer
Functions’ with MATLAB
Ales Beli¢, University of Ljubljana, Faculty of
Electrical Engineering; ales.belic@fe.uni-lj.si
Simulator: MATLAB 5.3 (www.mathworks.com)
with Neural networks toolbox, running on Debian
Linux 3.0 was used to solve this comparison.

Task a: Identification with linear dynamical
model: First identification with linear dynamical model
was tried. MATLAB arx function was used and 2™ or-
der discrete-time model was identified:

0.5289z° —0.5206z

22 —1.586z' +0.5985

10
time(s)
Figure 1: Simulated (solid line) in compare with meas-
ured force (broken line). Training data set — above,
validation data set below.

Model simulation with respect to measured data is
presented in Figure 1. As can be seen, linear second
order model can describe the general system dynam-
ics; however, the details are not matched.

Task b: Identification with linear dynamical
model and the artificial neural network (ANN) in
parallel. For this task, features of the Neural Network
Toolbox were used.

In following MATLAB code, E represents the dif-
ference between real system’s measurements T and
linear model simulation y. Next, a network structure
net is created with 7 neurons on the first layer and 1
neuron on the output layer, and is trained according to
the system input P and target E. The network and the
linear dynamical model are then simulated in parallel
and the result of the hybrid system is shown in Fig. 2.

E =T-y'y net = ...
newff (minmax (P), [7,1],{"'tansig’', "purelin'});
netl = train(net,P,E); vyl = sim(netl,P);

")

plOt (tl Y*Yl'rt, Tl '--

force

| L L L

.
0 2 4 6 8 10 12 14 16 18 20
time(s)

Figure 2: Simulation of the parallel structure of linear
dynamical model and the ANN (solid line) in
compare with measured force (broken line).

Training data set — above, validation data set - below.

Task c: Identification with dynamical ANN. The
following code shows again the use of the Neural
Network Toolbox, especially for the ANN model train-
ing. The results are shown in Figure 3.

net = ...
newff ([0 1],[10,1],{'tansig', 'purelin'});
net.layerconnect = [0 1;1 0];

net.layerweights{1l,2}.delays = [1,2];
net.inputweights{1l,1}.delays = [1,2];
net.trainparam.epochs = 50;
net.trainparam.show = 1;

net2 = train(net,con2seq(P),con2seq(T));
y2 = seg2con (sim(net2,con2seq(P)));

1.2

1
0.8
0.6

force

0.4

force

I
0 2 4 6 8 10 12 14 16 18 20
time(s)

Figure 3 Simulation of the neural network model (solid
line) in compare with measured force (broken line).
Training data set — above, validation data set - below.

C17 Classification: Toolbox-based CACSD
Approach
Simulator: MATLAB 5.3 (Linux) wit Neural Net TB

25 July 2005

SNOSI¥VdNOD

€ onss|



