
+++ C18 − Solut ion in MS Excel +++

79

SN
E 1

7
/3

-4
, D

ecem
ber 2

0
0
7

Solution to ARGESIM Benchmark C18 ‘Identification of Nonlinear
Dynamical Relations’ using Excel with a Neural Networks Add-In

Sašo Blažič, University of Ljubljana, Slovenia; saso.blazic@fe.uni-lj.si

imulator: It is known for quite some time that
artificial neural networks (ANNs) are capable of

modelling very complex nonlinear systems. Hence,
they have become very popular and widely used in a
variety of applications. A reasonable conclusion was
that ANNs should be somehow accessible to a wider
public. Many companies started developing Add-Ins
for Microsoft Excel that has become the industry-
standard data analysis and modelling tool. These
Add-Ins are usually very easy to use and a user with-
out much experience with ANNs is capable of train-
ing a network and using it for prediction or classifica-
tion purposes. The drawback is that the user is very
limited in customising the ANN.

Two tasks (identification with parallel structure of a
linear model and an ANN, and identification with a
dynamical ANN) were solved in the paper with the
following software configuration: Microsoft Office
Excel 2003, and NeuralTools, Neural Net Add-In for
Microsoft Excel, Version 1.1.0 – Professional Edition,
Palisade Corporation.

odel: When using NeuralTools, neural net-
works are developed and used in four steps:

 Data preparation. The data used in NeuralTools
are defined in data sets. A Data Set Manager is
used to set up data sets so they can be used over
and over again with neural networks.

 Training. With training, a neural network is gen-
erated from a data set comprised of cases (input
vectors) with known output values. This data of-
ten consists of historical cases for which the val-
ues of output/dependent variable are known.

 Testing. With testing, a trained neural network is
tested to see how well it does at predicting
known output values. The data used for testing is
usually a subset of historical data. This subset
was not used in training the network. After test-
ing, the performance of the network is measured
by statistics such as the percentage of the known
answers it correctly predicted.

 Prediction. A trained neural network is used to
predict unknown output values. Once trained and
tested, the network can be used as needed to pre-
dict outputs for new case data.

Each of the steps is done by simply clicking the ap-
propriate icon and setting a few parameters.

NeuralTools supports different neural network con-
figurations to give the best possible predictions. For
classification/category prediction (where the depend-
ent variable is a category type), two types of networks
are available: Probabilistic Neural Networks (PNN)
and Multi-Layer Feedforward Networks (MLFN).
Numeric prediction can be performed using MLFN
networks, as well as Generalized Regression Neural
Networks (GRNN), which are closely related to PNN
networks.

NeuralTools makes selecting a network configuration
easy by offering a Best Net search. When selected,
NeuralTools will train and test a variety of neural
network configurations to generate the one that gives
the best predictions for the data. The best configura-
tion is determined based on testing data.

The linear model used is the same as the one
proposed in the solution by Aleš Belič, identi-
fied in MATLAB, and not separately investi-

geated in EXCEL:

2

2 1

0.5289 0.5206
()

1.586 0.5985

y z zlinG z
u z z

 (1)

There ylin is the output of the linear part, with input
variable u (thickening) and output variable y (force).

-Task: In this task the parallel connection of an
LTI system and a static ANN was used. The

linear model is given in (1). The output of the model
is lin ANNy y , and the ANN is therefore trained with u
at its output and the residual error liny y at its out-
put.

Two columns are prepared in Excel. In the first col-
umn the input samples (from the identification signal)
are prepared and in the second column comprises of
the samples of liny y . These two signals are previ-
ously prepared in MATLAB and imported into Excel.
Then (identification) data set is defined with the Data
Set Manager. The training is started with the General-
ized Regression Neural Networks that does not re-
quire any designer parameters (whereas Multi-Layer
Feedforward Networks require the number of nodes
to be defined). (Actually, this is a very simple map-

S

M
A

B

+++ C18 − Solut ion in MS Excel +++

SN
E

1
7
/3

-4
,

D
ec

em
be

r
2
0
0
7

80

ping with one input and one output, and therefore any
setting results in a similar network response.)

The ANN and the linear dynamical model are then
simulated in parallel and the result of the hybrid sys-
tem is shown in Figure 1. Calculated correlation coef-
ficients for this case are 0.9805 and 0.9814 for the
training and the validation data set, respectively.

-Task: In this task the dynamical ANN is used.
There are four inputs to the system: y(k-1), y(k-

2), u(k-1), and u(k-2), and the output is y(k). The
ANN is trained on the identification data. The net-
work response is simulated in the validation phase
(with the new data).

NeuralTools does not enable training of dynamical
neural networks directly. In the training phase only a
static data set is permitted. In the validation phase we
want to simulate the response of the ANN to a par-
ticular input signal which is again not possible di-
rectly with the NeuralTools. The software only offers
the possibility of predicting the output to a static data
set. In order to simulate a dynamical network one
needs to feed back the delayed network outputs. But
NeuralTools has a special feature that can be made
good use of in order to simulate the dynamical net-
work. It is possible to start the prediction in the “Live
prediction” mode. This means that the output of the
network is recalculated as soon as the input data
change (in Excel worksheet). A simple Excel macro
was written that iteratively copies network predic-
tions and pastes them as inputs for the future outputs.
Thus, outputs are effectively fed back and the net-
work becomes dynamical.

NeuralTools with the addition of a simple macro are
therefore capable of simulating the dynamical ANN.
The problem is that in the training phase it is virtually
impossible to achieve a stable dynamical ANN for

this case. A vast amount of tests were made and the
results were always the same: very good prediction
ability (for identification and validation data) and
locally unstable models when using feedback. It is
well-known that the dynamical neural networks are
much harder to train than the static ones. Although
they can be trained using the same gradient-based
algorithms that are used for static networks, the per-
formance of the algorithms on dynamic networks can
be much worse. If the simulation of a dynamical
ANN is possible with some extensions, the training
procedures turned out not to be suitable for training
of the dynamical ANN for this case.

Since unusable simulation data were obtained, one-
step-ahead predictions are shown in Figure 2.

esumé: NeuralTools turned out to be quite
effective in training static networks. The soft-

ware is intuitive, very simple to use and suitable also
for users without much experience and knowledge
about artificial neural networks. This simplicity is
also a certain drawback since an experienced user is
very limited in customising the network. It turned out
that the training algorithm of the software is not very
suitable for dynamical networks and similar problems
as the ones faced in our experiments can be encoun-
tered. It is true that the data used in this case are diffi-
cult for the identification since a slight change of the
dynamics with time can be observed and also the
input signal excitation is not very good at high fre-
quencies.

Corresponding author: Sašo Blažič,
Univ. of Ljubljana, Faculty of Electrical Engineering,
Tržaška 25, 1000 Ljubljana, Slovenia
saso.blazic@fe.uni-lj.si

Received: September 14, 2007
Revised October 10, 2007
Accepted October 15, 2007

0 5 10 15 20
−0.2

0
0.2
0.4
0.6
0.8

1

time [s]

fo
rc

e
(id

en
t.)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time [s]

fo
rc

e
(v

al
id

.)

Figure 1. Simulation of the parallel structure of linear

dynamical model and the ANN (solid line) in comparison
with the measured force (dashed line). Training data set

(top), validation data set (bottom).

C

0 5 10 15 20
−0.2

0
0.2
0.4
0.6
0.8

1

time [s]

fo
rc

e
(id

en
t.)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time [s]

fo
rc

e
(v

al
id

.)

Figure 2. One-step-ahead prediction of the neural network
model (solid line) in comparison with the measured force
(broken line). Training data set – above, validation data

set – below.

R

