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S
imulator: MAPLE has primarily been designed as

computer algebra system for analytical/symbolical

computation. Recent versions support also numerical

vector and matrix manipulations on a high level, so

that also numerical tasks of any kind can solved.

Among several numerical algorithms, MAPLE offers

solvers for ODEs and DAEs in convenient way (addi-

tionally with symbolic solutions, e.g. by series). Usu-

ally, users work in a Java-based GUI, with command

window, display window, etc., where commands are

put in straightforward.  Programming in terms of com-

plex programs - as used in this solution - is possible

although not very convenient. 

Modelling. Three modelling approaches for SIR-

itype epidemics have to be implemented: ODEs,

difference equations (DEs) and cellular automata (CA). 

ODE modelling and solving is a standard task of

MAPLE: ODEs are defined, then the solver is called:

a:=0.2: r:=0.6/10^4:
ics:=K(0)=100, S(0)=16000, R(0)=0 :
ode:=diff(S(t),t)=-r*S(t)*I(t),

diff(I(t),t)=r*S(t)*I(t)-a*I(t), 
diff(R(t),t)=a*I(t):

solution:=dsolve({ode,ics},numeric);
Difference equations must be implemented in nested

loops. The Euler discretisation with unit stepsize for

the ODEs makes use of arrays and loops:

for i from 1 to 50 do
Sus[i] := Sus[i-1]*(1-r)^(Inf[i-1]/16000);
Inf[i] := Inf[i-1]+Sus[i-1]*

(1-(1-r)^(Inf[i-1]/16000))-a*Inf[i-1];
Rec[i] := Rec[i-1]+a*Inf[i-1];

end do:
A much more elaborate task is the implementation of

a cellular automata model. As MAPLE is not capable

of handling subroutines in terms of external func-

tions/programs all the routines need to be written in a

single file in nested loops. In principle, the CA is

implemented by arrays representing the grid of cells

of the automaton, which are updated in unit steps.

Two reasons suggest to structure the update of the

cells: first, the one-file implementation in MAPLE

needs to be structured for better coding, debugging,

and reading; and second, codes for CA update become

standardised using evolution operators like update,
propagation, transition, etc. Consequently the MAPLE

implementation follows this suggestion: manipulation

of the CA is realised by evolution functions like Set-
Particles, ParticleMovementHPP, InfectionTotal, etc.

These functions are then called repeatedly within a

loop and so resemble the CA. The implementation has

been kept very flexible to allow changes in the general

structure (automata dimension, lattice structure, etc.) 

The main loop for the cell state update moves the par-

ticles = individuals (MovementParticle), checks for

collision with or without infection (Collision),

checks for recovery (Recovery), and summarises the

new amount of susceptible, infected and recovered

particles (RecollectQuantity) for comparison with

ODE and DE solutions :

CellularAutomaton:=proc(quant)
local counter:
counter:=0:

while counter<quant do
MovementParticleFHP():
CollisionFHP():
Recovery():
RecollectQuantity();
counter:=counter+1:

end do:  
Appendices characterise the special structure of the

lattice gas cellular automata used (HHP: Hardy - de

Pazzis - Pomeau automaton; FHP: Frisch - Hasslacher

- Pomeau automaton). As example, the FHP move-

ment on a square grid is implemented by:

MovementParticleFHP:=proc()
global Cells, Cellcopy, ... : local i,j,k:
for k from 1 by 1 to ParticlePerCell do
for i from 1 by 1 to Cell_width do
for j from 1 by 1 to Cell_length do
Cellcopy[MoveFHP[k](i,j,k)]:=

Cells[i,j,k]:
end do:  end do: end do:

A-iTask: CA and ODE Simulation. MAPLE

iiworks on basis of procedures: for ODE solution,

first the ODE is defined and parametrised (see

before); then a solver procedure is set up, to be used

for calculating the solution solution at time instants

solution(i/100000000) (results in Figure 1):

solution(0);
for i from 1 to 10 do

solution(i/100000000): end:
odeplot(lsg,[[t,S(t)],[t,K(t)],

[t,R(t)]],0..100);

For CA simulation, first the grids with the cell states are

initialised with random distribution of the particles. Cel-

lular automaton simulation is started by calling Cellu-
lar_Automaton:=proc(quant) for the desired

number of updates (quant), using a specified CA type.
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The types investigated are FHP-CA, HPP-CA, and

HPP-CA with random deflection. The results

(Figurei1) show qualitatively similar behaviour, but

the CA dynamics is significantly slower.

B-iTask: Vaccination Strategies in CAs. For the

iiFHP-CA model, different vaccination strategies

are modelled by different initial distribution of recov-

ered individuals (particles) on the cell grid, because

recovered people behave like vaccinated - they cannot

get infected. An initial distribution of recovered indi-

viduals (4.000) can be implemented as follows:

CellNumber:=proc(status,number,xUpL,...)
while j<number do
row:=Generate(integer(distribution=
uniform[yUpL-1, ylowR],projection=ceil));

column:=Generate(integer(distribution=
uniform[xUpL-1, xLowR],projection=ceil));

end do:end proc:
Simulation results (Figurei3; infected individuals) for

the different vaccination strategies show, that the solu-

tions do not differ significantly. But interestingly, par-

tial area vaccination results in less infected individuals

than full area vaccination (all with 4.000 vaccinated). 

C-iTask: ODE vs. CA Solutions. ODE solution and

iiDE solution are references for the summed up

dynamics of suscepted, infected and recovered individ-

uals of CA models, in case of spatial equal distribution

of all individuals in each time step. For comparison, the

ODE solution is calculated as before, and the DE solu-

tion is calculated by the simple loop shown in TaskiM.

In FHP-CA up-

date after move-

ment, collision,

and recovery, all

individuals must

be equally distributed on the grid, as given in the code

snippet below. Results in Figurei3 show indeed a good

coincidence of all three solutions. 

MovementParticleFHP(): CollisionFHP():..
R:=Eval(3); I:=Eval(2); S:=Eval(1);
NumberRandom(3,R,1,1,C_width,C_length):
NumberRandom(2,I,1,1,C_width,C_length):...
RandomSetParticles():

Résumé: While ODE solution is a standard task for

iMAPLE 10 in this benchmark solution, model-

ling of a CA and programming of a CA update algo-

rithm is a nontrivial task. The chosen implementation

works with arrays for the CAs, which are  updated by

evolution functions programmed as MAPLE proce-

dure. The implementation follows suggestions for

standardised evolution operators for CA modelling and

requires deep knowledge of MAPLE programming.
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Figure 1: Results of different SIR models -  a) ODE solution, 

b) FHP-CA solution, c) HPP-CA solution, d) random HPP-CA.

Figure 2: Infected for different 

vaccination strategies, FHP-CA.

Figure 3: Infected for different models:

ODEs, DEs, ‘uniform’ FHP-CA.




