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The aim of this comparison is to numerically solve 
the classical Kermack McKendrick epidemic-model, 
given through a system of ordinary differential equa-
tions, and furthermore to develop a cellular automaton 
model whose properties represent the ones governed 
by the continuous model. Since for this purpose, lat-
tice gas cellular automata (LGCA) seem to be well 
suited, different LGCA should be implemented, the re-
sults compared and arising differences interpreted 
and discussed.  

The used software is not of primary interest as the 
concentration should be put on the comparison of 
completely different approaches to simulate the same 
process. Under certain assumptions analogy will have 
to be shown and advantages of one or the other ap-
proach emphasized. 

General Description: 
W. O. Kermack and A. G. McKendrick proposed in 

1926 a simple SIR model for epidemic spread based 
upon a system of nonlinear ordinary equations. The 
abbreviation SIR stands for susceptible – infected – 
recovered and it deals with an epidemiological model 
to investigate the theoretical number of people in-
fected with a contagious illness in a closed population 
over time.

As to simplify the model, several assumptions 
have been made. The first one considers the popula-
tion size which has to be constant over the observed 
period of time.  

This means that no in- or outflow (e.g. births or 
deaths) takes place. Besides that, incubation time of 
the infectious agent is zero and the duration of infec-
tivity is the same as the length of the disease. 

Taking into account all this information, the follow-
ing system arises: 
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Here r is the infection rate, a the recovery rate, S(t)
the number of susceptible individuals, I(t) the number 
of infected individuals and R(t) the number of recov-
ered individuals, at time t respectively. 

Purpose of this comparison is not just solving this 
task with conventional methods but also to implement 
a cellular automaton model to obtain a solution for the 
problem. Therefore, a lattice gas cellular automaton 
(LGCA) should be considered to describe the epi-
demic. For those not being familiar with cellular auto-
mata in general and with LGCA in particular, a brief 
outline should explain the main properties.  

Cellular automata are based upon a discretisation 
of space and time. Each cell can hold a finite number 
of states and the temporal evolution of the automaton 
is governed by transition rules which act locally and 
simultaneously on the cells. The transition rules can 
either be deterministic or probabilistic. Locality is in-
troduced by a neighbourhood-function which defines 
the cells being determinant for updating the cell state 
(see Figure 1). 

Figure 1: Graphical representation of different neighbour-
hood-functions in 2-dimensional cellular automata 

Figure 2 shows a configuration of the probably 
best known example of a 2-dimensional cellular 
automaton, the Game of Life. Cells can hold two dif-
ferent states and Moore-neighbourhood (eight sur-
rounding neighbours) is chosen as neighbourhood-
function. The transition rules are purely deterministic 
but will not be presented here in detail. 

Figure 2: Game of Life; 2-dimensional CA with two dif-
ferent states for each cell (black, white)  
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As we are studying epidemic spread, a LGCA has 
been chosen, allowing for the simulation of diffusion 
processes. LGCA are two-dimensional cellular auto-
mata with particles moving from cell to cell during 
each time-step of the automaton. Therefore, the defi-
nition of different states for the cells becomes obso-
lete, rather each particle can hold different states (in 
our case this will be susceptible, infected or recov-
ered). Neighbourhood now refers to all particles in one 
cell and not to the surrounding cells. Since LGCA de-
scend from fluid dynamics, basic physical quantities 
like mass and momentum are conserved. Evolution 
(the motion of the particles) consists of propagation 
and collision.  

We have to distinguish between the HPP (Hardy, 
de Pazzis, Pomeau - 1973) and the FHP (Frisch, 
Hasslacher, Pomeau - 1986) model. The first one is 
composed of a square lattice which contains no more 
than four particles per cell. Each particle is determi-
nate by its lattice-vector which connects the cells to its 
four nearest neighbours and defines the direction the 
particle moves on. It is not possible that one cell con-
tains two particles moving along the same direction. If 
and only if two particles collide when entering one cell 
from opposite directions, each particle changes direc-
tion by 90°. Usually the orientation of the deflection 
will be predefined but it may also be chosen randomly 
for each collision. Discussion of this feature will be 
content of a later task.  

Figure 2: HPP and FHP lattice-gas cellular automaton; the 
lines represent the directions of the lattice-vectors connect-

ing the cells with its neighbours; particles are not repre-
sented

The FHP model con-
sists of hexagonal struc-
ture containing a maxi-
mum of six particles per 
cell again being defined 
by its lattice-vectors con-
necting the cell to its six 
nearest neighbours. Colli-
sion rules are more elabo-
rated in that case; we 
chose the simplest ones, 
also called FHP-I collision 
rules.

A two-particle head-on collision redirects the parti-
cles by changing the direction of their lattice vector by 
60° randomly clockwise or counter clockwise but 
equally for the two particles. A three-particle head-on 
collision again changes the direction equally by 60° ei-
ther clockwise or counter clockwise but remaining the 
same for all collisions of this type. For further readings 
we recommend [2]. 

We now identify each particle of the automaton 
with one individual, which can either be susceptible, 
infected or recovered. Let N be the total number of 
nodes (cells) in the lattice and Sk the number of sus-
ceptible individuals in the entire lattice at time k. Then 
the probability of one susceptible individual to become 
infected in a single time step (k k+1) is 

N
Ik

r)1(1     (2) 
and hence the expected number of susceptible 

individuals who become infected is 
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The expected number of individuals who recover 
in a single time step is 

kIa .    (4) 

For a well stirred population equations (2), (3) and 
(4) yield to: 
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The following considerations may give a relation to 
a system of difference equations. Taylor expansion for 
small r 
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This system of difference equations (5) is of equal 
structure as the previously given system of differential 
equations (1). 

Task a –  CA and ODE Simulations 
Find the solution for the problem by solving the 

system of ODEs (1) using the initial values and pa-
rameters given in Table 1.  

S(t=0) = S0 16000 
I(t=0) = I0 100
R(t=0) = R0 0
Infection rate r 0.6·104

Recovery rate a 0.2 

Table 1: initial values and parameters for task a 

Following this data, implement a FHP LGCA with a 
domain size of 100×100 (and therefore 104 hexa-
gons), an infection rate of r = 0.6 (in accordance to the 
parameter value for the previous task divided by the 
number of hexagons) and periodic boundary condi-
tions to remodel the system and compare the ob-
tained results. To prescribe an initial configuration, 
uniformly distribute the individuals of type S and I.  

Oppose the results for the FHP model to a HPP 
model and discuss the differences. Furthermore 
change the properties of the HPP model regarding the 
direction of the deflection of particles to obtain random 
motion (not only depending on the initial configuration) 
and compare the results to the former ones. 

Task b – Vaccination Strategies in CAs 
Use the properties of the FHP model of the previ-

ous task and implement different strategies for vacci-
nation of susceptible individuals in LGCA. A group of 
4000 susceptible individuals should be vaccinated. 
Therefore, assume having the infected individuals 
grouped together in one half of the domain and vacci-
nate a part of the rest of the population. Experiment 
with different policies for vaccination and oppose the 
results. In particular, implement vaccination in the 
whole domain, vaccination in the part of the domain 
containing the infected individuals (epidemic area) 
and vaccination of individuals being located at the 
borders of the epidemic area. Once again solve the 
continuous model, wherein a vaccination process can 
easily be described by setting R0 = 4000 but note that 
spatial inhomogenities can not be represented in this 
approach. 

Task c – ODE vs. CA Solutions 
Until now, spatial grouping of infected individuals 

can be observed which will consequently change the 
results of the simulation in comparison with the con-
tinuous approach.  

Change the FHP LGCA to avoid spatial inho-
mogenities of different groups of individuals. For these 
purpose, ensure perfectly uniform distributions for all 
three groups of populations (S(t), I(t), R(t)) by ran-
domly rearranging all individuals in every time step of 
the automaton. The fact that this assumption destroys 
basic principles of LGCA is not decisive for our stud-
ies.

Use parameter values given in Table 2 for these 
simulations.

S(t=0) = S0 40000 
I(t=0) = I0 1000 
R(t=0) = R0 0
Infection rate r 0.3·104

Recovery rate a 0.2 

Table 2: initial values and parameters for task c 

Show that for these parameter values the obtained 
results for the continuous and the LGCA approach are 
not only of equal qualitative behaviour but also lead to 
fairly similar quantitative values. Explain the slight dif-
ferences concerning the speed of epidemic spread by 
comparing the data with the solution of the difference 
equation (5). 

Experiments with lower values of S0 and interpret 
the growing discrepancies. 
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