SIMULATION NEWS EUROPE

A Programmed Solution to ARGESIM Comparison "C15 Clearance Identification" with MATLAB

C. Rainbacher, F. Breitenecker; TU Vienna;' e9826255@student.tuwien.ac.at

Simulator. MATLAB is a widely used software tool based on numerical vector and matrix manipulation. Additionally it provides several toolboxes for various tasks (Optimisation toolbox used here).

Model: The model ODEsare directly programmed in MATLAB code with a simple if-else-structure.

```
function xd = C15dgl(t,x)
C15data; k01 = 0.0041; k12 = 0.0585;
k21 = 0.0498; V1 = 7.3;
A = [-(k01+k21), k12;...
k21, -k12];
b = [C15inf(t);0]; xd = A*x + b;
function inf = C15inf(t); C15data; n = length(t);
for j = 1:n
    if t < tau;inf(j) = D/tau;
    else ; inf(j) = 0; end; end;
```

Task a: Simulation of the System: The differential equations are numerically solved by MATLAB's ODE solver ODE23 (RKF-type solver), calling the above model description.

sol = ode23(@C15deq,tspan,x0);

Results for $\tau_1 = 0.5$ min, $\tau_2 = 3$ min und $\tau_3 = 240$ are given in fig. 1. In fig. 2 one can already see the effect of the clearance: short injection time - very low concentration in the central compartment. Table 1 gives the numerical values.

$\tau_1 = 0.5 \text{ min}$	$\tau_2 = 3 \text{ min}$	τ ₃ = 240 min
x ₁ (1.5)= 2341.9	x ₁ (4) = 2184.2	x ₁ (240)=1058.2
c ₁ = 320.8	c ₁ = 299.2	c ₁ = 145.0

Table 1: Values of x_1 and c_1 1 min after injection ends (for τ_3 =240 min at the end of the injection time)

Task b: Identification. The identification of the model was done with the Levenberg-Marquardt algorithm, using the known algebraic solutions of type $c_1(t) = b_1 \cdot e^{-\lambda_1 \cdot t} + b_2 \cdot e^{-\lambda_2 \cdot t}$

In order to improve efficiency of the identification, the parameters b_1 , b_2 and λ_1 , λ_2 were identified in two steps (b_i depend only linear). These "indirect" parameters then "recalculate" the "true" parameters:

```
% Caculate "linear" parameters
B = zeros(length(t),2); B(:,1) = exp(-lam(1)*t);...
%solve B*b = cl for linear parameters b
z = B*b; f = z-cl; %compute error (residual)
% Call Identification (Optimisation)
options = optimset
(...,'iter','LevenbergMarquardt','TolX',0.00,...)
[lam,resnorm,residual,exitflag,output]=
lsqnonlin('Cl5conc',lam,[],[],options,Datas,h)
% Recalculation of true parameters
k01 = (lam(1)*lam(2)*(b(1)+b(2)))/ ...
V1 = D/(b(1)+b(2))
```

The identified values are: $k_{01} = 0.0042$, $k_{12} = 0.0581$, $k_{21} = 0.0501$, $V_1 = 7.2150$; Clearance C = $k_{01}*V_1*1000 = 30.303$, residuum 260.8067. Fig. 3 shows result graphically

Figure 3: Identified model and measured data

Task c: Error Estimation. Data are disturbed at MATLAB level, for each set of the disturbed data the numerical identification is performed.

	k 01	k 12	k 21	V 1
mean	0.0042	0.0579	0.0512	7.2055
sd	0.0005	0.0085	0.0117	0.4411

Table 2: Mean and standard deviation (sd) of identified parameters, based of 1000 samples

C15 Classification: Programmed Fully Numerical Approach

Simulator: MATLAB Rel.12 with Optimisation Toolbox

ssue 38/39