Comparisons of Simulation Tools and Simulation Technique

Comparison 12: Collision Processes
in Rows of Spheres

This comparison deals with a model of the mechan-
ics. The features to be compared represent a large num-
ber of events, the numerical accuracy, the iteration of a
boundary value, and stochastic parameter variations.
Piecewise, constant velocities permit both a continuous
and a discrete treatment.

Subject of the investigation are sequences of colli-
sions, caused by the impact of a sphere on a resting row
of spheres. In the elastic case only one impact occurs be-
tween neighbouring spheres, whereas one can observe
many interactions if elasticity decreases. Numerical
problems result from the peculiarity, that the relative
distances and velocities at a low elasticity can be
smaller by orders of magnitude than the absolute vari-
ables. In order to avoid small faulty differences of great
values, the relative quantities are used as variables, and
absolute quantities are obtained by summation.

Partially elastic collision of two masses

The collision shall take place at # = 0 with the veloci-
ties vy, v, (Figure 1a). The force F(?) being exerted from
both masses on each other, rises first with ¢ and reaches
its maximum at ¢ = ¢* (Figure 1b). In this compression
phase, the bodies are increasingly deformed in the im-
mediate vicinity of the contact place. At the end (maxi-
mum deformation) both bodies have the same velocity
v*, In the following restitution period the deformations
disappear partially
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or completely, concurring with a reduction of the con-
tact force F(?). After the time interval #5 the collision
process is finished and both masses move with veloci-
ties v; and v,, respectively.

The force impulses £ and Fp , exerted during both

periods, determine the momentum change. They are
represented by the areas below the force curve F(2).
The force impulse in the restitution phase reaches at
most the value of the compression phase:

Fr=eFy, with0<e<1. D)

e restitution coefficient (collision coefficient)

An elastic impact has the collision coefficiente = 1,
whereas an inelastic collision is known to have no resti-
tution phase (e =0). In general, partially elastic case the
collision coefficient takes on values of 0 <e<1. Using
the momentum conservation law, the new velocities in
the next period of time follow this piecewise
description:
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After the limiting process of the collision time #5—
0, the impact shall be modelled in the following as a
state event that takes place immediately.

Mathematical model of a spheres row

In order to obtain an ideal translation, the p spheres
arranged in a row are tied up with infinite long threads
without any friction (Figure 2). The model consists of
p = 4 spheres;

Figure 1: Central impact of two masses
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Figure 2: Collision pendulum of four spheres
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for all collisions e takes on a constant value that does
not depend on the velocities. A further precondition is
the equality of the diameters d for all spheres, their
masses m; and distances a from each other.

In the model description the relative quantities are
variables:

Vi =Xy —X; —d, Y2 :X3 —X) —d, y3 =Xy —x3 —d,
Y1 =Xy =Xy, Yy =X3 =Xy, V3 =Xy —X3. 3)
For determination of the remaining absolute quanti-
ties by summation equations of motion for the inner dis-
tances y; (i=1,2,3) and the absolute variable x; are
needed. The initial conditions are chosen so that sphere

1 strikes the motionless other three spheres with veloc-
ity vo. Aninfluence of external forces is not considered.

Equations of motion

X =0 x(0)=vg., x(0)=0,

=0 y0)=-vy, ¥»(0)=a,
¥, =0 y,(0)=0, y,(0)=a,
V3 =0 y30)=0, y3(0)=a “4)

Absolute quantities
Xy =X +y +d, X3 =Xy +y, +d, x4 =x3+y3+d
Xo =Xp+Y,X3 =Xp + Yy, Xy =X3 + )3 ®)

The expressions on the right side of equations (6) de-
scribing the velocities after a collision contain the rela-
tive velocities at the moment of impact as derivatives of
the distance variables y;, that determine the time of
collision.

Collision 1-2
Xy =x;+(+e)-my [ (my +my)-y
Yo =Yy +(L+e)-my /(m; +my)-y; (6a)
y=-ey
Collision 2-3
=y ++e)-my/(my +my3) -y,
V3 =y3 +(l+e)-my [ (my +m3)-yy (6b)

Yo =—¢)
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Collision 3-4
}‘72 :_)'72 +(1+€)m4/(m3 +m4)y3 (6C)
V3 =€ )3

Insignificant or positive relative velocities
(7120)A(y220)A(y3 20), i.e., monotonously in-
creasing absolute velocities, establish the termination
criterion for a simulation run, that is, no further colli-
sions will occur and the velocities will not change.

Tasks

Task a)

al) Graphical representation of the distance-time
functions y; (¢), y, (t) and y; (?) for parameter val-
ues e =0.2, d =1 and initial valuesa=1, vo=1 in
time interval 0 < t< 15 (termination criterion met).
Initial values and sphere diameter d remain valid in
the following.

a2) Final values of the velocities for e = 1 (elastic case)
and for the quasi-plastic case in which velocities are
sufficiently equal.

Task b)

b1) Number of collisions as a function of the restitution
coefficient n(e) which should be varied frome=1 to
a value for which the quasi-plastic case is reached.

b2) Graphical representation of the final velocities x,
X, X5 and x4 as a function of values of e fore< 1 up
to the quasi-plastic case.

Task ¢)

cl) As a boundary value problem the restitution coeffi-
cient e is to be determined such that the final velocity
be V4=V /2.

c2) The restitution coefficient e, which is equal for all
spheres, is now a normally distributed stochastic
variate with mean value m = 0,5 and standard devia-
tion s = 0,05. The distribution function of v;, mean
value, standard deviation and confidence interval
with confidence probability of 95% for a suffi-
ciently large sample size are to be determined.
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