

 33 April 2001

SIMULATION NEWS EUROPE

C
O

M
P

A
R

IS
O

N
S

Issue 31

C11 SCARA Robot –
MATLAB
Unsegmented Model /Environmental Level

Simulator: 8: MATLAB is a widely used software
tool based on numerical vector and matrix manipula-
tion. For this solution “pure” MATLAB (without the
graphical simulation blockset SIMULINK) was used.

Model: The model equations have to be pro-
grammed, in orderd sequence the right-hand side of
the equations has to be provided for an ODE solver:

function dydt2 = f(t,y)
global m3l g kt Ra La u P D
T = (sqrt(3)/2)*u.*kt.*[y(7); y(8); y(9)]
% right side --------
dydt(1) = y(4); dydt(2) = y(5);
dydt(3) = y(6);
dydt(4) = T(1)+O(2)*(2*y(4)*y(5)+
 y(5)^2)*sin(y(2));
dydt(5) = T(2)-O(2)*y(4)^2*sin(y(2));
dydt(6) = T(3)-m3l*g;

Task a: Explicit and Implicit Modelling Techni-

ques: The model was implemented in three various
ways. First the implizit equation M· dy/dt = b(y,t) was
implemented, as MATLAB’s solvers allow implicit
models of the type given, using options and providing
the function b(y,t) and the Mass matrix M(y) :
options = odeset('Mass','M(t,y)')
[t y] = ode15s('robotersys_im') ...
function varargout=robotersys_im(t,y,flag)
switch flag
case ''
 varargout{1} = f(t,y);
case 'mass'
 varargout{1} = mass(t,y);
case 'init'
 [varargout{1:3}] = init; end
function dydt2 = f(t,y) ...
function M = mass(t,y) ...
function [tspan,y0,options] = init ...

In the second approach the Gaussian algorithm

was used to solve the linear equation M(y)· dy/dt =
b(y,t) with respect to dy/dt in each integration step
numerically.

This may take more time, but an explicit solver can
be used, which could be faster then the implizit one
necessary in the first approach.

The third approach inverted the mass matrix sym-
bolically. The explicit equation dy/dt = M-1

· b(y,t) can
easily be solved by an explizit algorithm. The table
compares the times for a 10 sec run (normalized):

Model / Algorithm ode15s ode23t ode23tb

implicit 1.00 1.01 1.06

explicit / numerical 1.35 1.31 1.32

Explicit / symbolical 2.17 1.67 1.78

Task b: Pont-to-point control: The PD control

was directly integrated in the function for the right side
of the implizit implementation. In order to bound the
voltage, a simple if assignment was used:

if y(6+i) > Imax(i) & dydt(6+i) > 0
dydt(6+i) = 0; end

So it was possible to get the current back from the

limit without stopping the alorithm by using an event
option (simulation results next fig.)

Task c: Collision avoidance: As at MATLAB
level no event mechanism is available, for collison
handling again voltage was also directly regulated in
the function for the right side. In case of emergency,
the PD control was used as if the final state was
reached permanently, so that only the speed was
regulated down. With an if assignment the emergency
limits were realised (results see fig. above):

if (xtip-xobst) <= dcrit & y(3) < hobst
 U(1) = -D(1) * y(4);
 U(2) = -D(2) * y(5);

T. Piechatzek, H. Rekersbrink, TU Clausthal
ttiimmoo..ppiieecchhaattzzeekk@@ttuu--ccllaauusstthhaall..ddee

hheennnniinngg..\\--rreekkeerrssbbrriinnkk@@\\--ttuu--ccllaauusstthhaall..ddee

