
Simulation News Europe, Number 23, July 1998 49

Comparison 11 – DYMOLA
Classical mechanical approach

Automatic-symbolical and numerical inversion

DYMOLA (Dynamic Modelling Laboratory) is an
object-oriented simulation environment for the model-
ing, simulation and visualisation of continuous pro-
cesses. Besides the classical textual model definition,
Dymola provides an editor for graphical model editing
together with comfortable possibilities to reuse objects
by means of (graphical) libraries. Model details can be
given by ODE’s and DAE’s in the Dymola’s object-
oriented modelling language; for simulation either Dy-
mola’s simulator Dymosim can be used, or other com-
mercial simulators (e.g. ACSL, SIMULINK).

Model Description (Task a):One of the main char-
acteristics of Dymola is the law-oriented model de-
scription allowing the formulation of DAE models.
This description can be manipulated symbolically de-
pending on certain options. In this solution the textual
mode of Dymola is used, defining the equations of mo-
tion in DAE form in a Dymola class, instanced once:
model class components

parameter L1=0.4, L2=0.3, L3=0.3, ...
constant m1=8, m2=6, m3A=2.5, ...
local M(3,3), b(3), q(3), dq(3), ...
cut torq1(T1) torq2(T2) torq3(T3) ...
M=[th1+2*th2*cos(q(2))+th3, ...
b=[T1+th2*(2*dq(1)*dq(2)+dq(2)**2)* ...
q=[q1;q2;q3]; dq=[dq1;dq2;dq3]
dq=der (q)
M*der (dq)=b

end

Dymola is able to transform these equations to ex-
plicit form by symbolically inverting the mass matrix,
resulting in an explicit system. Another method is pro-
vided by a numerical inversion of the mass matrix by
means of an iterative algorithm, resulting in a pseudo-
explicit system. Depending on options, Dymola trans-
lates the system into both forms (as a third form, a pure
implicit description is possible).

Point to Point Control (Task b): As three motors
and three controls are required, two classes are defined:
one describing the equations to specify a motor, one de-
fining a control. Then the three instances of each class
are connected with the instance of the components
class, e.g.:
model class drive

...
cut torque (T)

end
model scara

submodel(drive) d1 d2 d3
submodel(components) robot
connect d1:torque at robot:torque1
connect d2:torque at robot:torque2
...

end

The bounds for the voltages and the currents are consid-
ered byif -statements:
U=if abs(P*(qdach-q)-D*qd-Umax)0 then

Umaxreg else P*(qdach-q)-D*qd-Umax

For simulation Dymosim is used. Dymola translates
eachif andwhen statement into a state event. There-
fore the bounds for the current are formulated with state
events in each target simulator. Dymosim handles state
events by means of built-in features of the integration
algorithms DASSL (used here) and LSODER. Unfortu-
nately, Dymosim does not use the DASSL algorithm for
direct integration of implicit equations (third method).

Of course nu-
merical inversion
of the implicit sys-
tem takes more
time than the inte-
gration of the ex-
plicit system; the
relation is shown in
the table below.

Figure 1 shows the graphs of the three joint positions.

Model description Norm. CPU-time
Task b) explicit – symbolic inversion 1 (1.32s at P120)
Task b) pseudo-explicit – numerical inversion 1.69
Task c) explicit – symbolic inversion 1.43
Task c) pseudo-explicit – numerical inversion 2.27

Obstacle avoidance (Task c):For the collision
avoidance a new class that observes and controls each
state variable is implemented. The two instances (one
for each state) check the distance between the obstacle
and the tool-tip of the robot, and apply either the emer-
gency maximum voltages and set the target positions
for the state-variables to the current position, or reset the
target positions to the original values bounding the volt-
ages to their regular-mode-interval. Below a part of this
description is shown, which is translated into a state
event in Dymosim:
Xcrit= if abs (Xtip-Xobs)Xobs+Dcrit) then
true else false
Umax=if Xcrit and (q3-Hobs) then
Umaxmax else Umaxreg
q1dach= if Xcrit and (q3-Hobs) then

q1 else q1target

Figure 2 illus-
trates the behav-
iour of the tool-tip
in this situation: it
does not cross the
critical region as
long as the end-
effector has not
cleared the obsta-
cle’s height. This
implementation of

obstacle avoidance increases simulation time by a fac-
tor 1.43 (see table).

E. Forsthuber, Techologie-Zentrum Steyr, A-4400
Steyr, email: forsthuber@titania.tuwien.ac.at

Figure 1

Figure 2

