
Simulation News Europe, Number 24, November 1998 43

Comparison 11 – ACSL
Hybrid Modelling Approach – Environment Level

ACSL is a widely used, compiler-based simulation
language for continuous models with textual and gra-
phical model description. It provides explicit and impli-
cit integration algorithms and (beside others) event
handling features. ACSL Math is a convenient experi-
mentation environment for ACSL with numerous ana-
lysis and graphical tools. It is based on MATLAB
syntax and can make use of MATLAB m-files.

Model description (Task a): ACSL allows the descrip-
tion of implicit models (and DAE models) by means of
an IMPLCoperator, which either breaks an algebraic loop
before a numerical integration step or calls directly an
implicit integration scheme (DASSL Code).

The following abbreviated DERIVATIVE Section
shows the essentials of the implicit model description
DERIVATIVE ! Implicit Dynamic Model
ma11 = th1+2*th2*c2+th3; ma12 = ...
b1 = t1+th2*(2*dq1*dq2+dq2**2)*s, b2 = ...
residdq1 = ma11*ddq1 + ma12*ddq2 -b1
residdq2 = ma21*ddq1 + ma22*ddq2 -b2
residdq3 = ma33*ddq3 -b3
dq1, ddq1 = IMPLC(residdq1, dq1ic)
dq2, ddq2 = IMPLC(residdq2, dq2ic)
dq3, ddq3 = IMPLC(residdq3, dq3ic)
q1 = INTEG(dq1, q1ic); q2 = ...
END ! of Derivative

When using a standard integration algorithm (e.g.
Runge Kutta 4th order) the algebraic loop for the deri-
vatives ddqx within the IMPLC statement and the equa-
tions for the variables residxx is broken by a Newton-
Raphson iteration. If the DASSL Code for direct inte-
gration of implicit systems is chosen the variables
residxx represent the residuum for the algorithm. In
order to compare the two implicit methods an explicit
model was also programmed.

Employing ACSL Math allows to transfer all neces-
sary parameter initializations and pre-calculations (out-
side of the integration loop) to an ACSL Math m-file
that can be used for both the implicit and the explicit
models. Different integration algorithms can be chosen
by assigning appropriate values to the IALG parameter.

Point to Point Control (Task b): Servo motors and
controllers can be easily implemented by standard mo-
delling features of ACSL. Figure 1 shows the time his-
tory for the joint angles (results of implicit and explicit
model look identical). The following table compares
the normalized simulation times for a simulation over 2
sec. For the implicit model the DASSL code is faster
than the Runge-Kutta algorithm. But as expected, exe-
cution of the explicit model is considerably faster com-
pared to the implicit one.

Computation time is not affected by using ACSL
Math as a runtime interpreter. However, models can be
switched easily by loading the respective model into the

ACSL Math workspace via the LOADcommand. This
facilitates the model comparison significantly.
load @file=scara_exp @format=model

!!prepare t,q1,q2,q3
tic(); start, toc()

load @file=scara_imp @format=model
!!prepare t,q1,q2,q3
tic(); start, toc()

Model Description Implicit Explicit

Integr. Algorithm
(Stepsize 0.005 s)

RK-4
IALG=5

DASSL
IALG=10

RK-4
IALG=5

Norm. CPU-time 1.0 0.86 0.12

Computation times on a HP715/100, ACSL Vers. 11

Obstacle avoidance (Task c): To detect a state event
the SCHEDULEoperator is used in ACSL which starts an
iterative state event locating routine and finally execu-
tes a DISCRETESection. For collision avoidance a ge-
neric SCHEDULEcommand is used in the ACSL model
description and the actual state event to be checked for
is selected via the index variable ichk .
chkvar(1)=d-dcr; chkvar(2)=h
SCHEDULE event .XZ. chkvar(ichk)

If the value of the checked variable chkvar(ichk)
crosses zero the DISCRETEsection "event " is trigge-
red and the simulation run is terminated:
DISCRETE event ; TERM(.true.) ; END

Parameter changes, restart of simulation and sampling
of output data is all done by an ACSL Math script file:
!! PREPAR t, x, xobs, h
Q1IC=0; Q2IC=0; Q3IC =0; ... % set init. cond.
ichk = 1; % Check obstacle distance
!! START
collect_data % script to save prepared data
if (h < 0)

set_par1 % script to set new parameters
reinit % script resets initial conditions
ichk = 2 % Check h if obstacle cleared
!! START
collect_data % script saves prepared data

end
set_par2 % script to set new parameters
reinit % script to reset initial conditions
collect_data % script to save prepared data
!! START
plot(time,d,time,x_obs,time,h)

Figure 2 was plotted from ACSL Math. It shows that
the tool tip does not cross the obstacle border line until its
height has reached a positive height above the obstacle.

Horst Ecker, Institute for Machine Dynamics and Measu-
rement, TU-Vienna, Wiedner Hauptstr. 8-10, A-1040 Vienna/
Austria, email: hecker@email.tuwien. ac.at

0 0 5 1 1 5 2

ime

 0 5

0

0 5

1

1 5

2

2 5

1
,

2
,

3

3

12

0 0 5 1 1 5 2

ime

 0 4

 0 2

0

0 2

0 4

0 6

0 8

,
o

b
s
,

obs

Figure 1 Figure 2

