
EUROSIM - Simulation News Europe, Number 22, March 1998 33

Comparison 11 - ACSL
Implicit/DAE Modelling Approach

ACSL is a well known and widely used, compiler-
based simulation language for continuous models. It
provides explicit and implicit integration algorithms,
event handling features and a powerful experimenta-
tion environment via ACSL Math. ACSL offers both
textual and graphical model description.

Model description (Task a): ACSL allows the de-
scription of implicit models (and DAE models) by
means of an IMPLC operator, which either breaks an al-
gebraic loop before a numerical integration step or calls
directly an implicit integration scheme (DASSL Code).

The following abbreviated DERIVATIVE Section
shows the essentials of the implicit model description.

DERIVATIVE ! Implicit Dynamic Model
ma11 = th1+2*th2*c2+th3; ma12 = ...
b1 =t1+th2*(2*dq1*dq2+dq2**2)*s; b2 = ...
residdq1 = ma11*ddq1 + ma12*ddq2 - b1
residdq2 = ma21*ddq1 + ma22*ddq2 - b2
residdq3 = ma33*ddq3 - b3
dq1, ddq1 = IMPLC(residdq1, dq10)
dq2, ddq2 = IMPLC(residdq2, dq20)
dq3, ddq3 = IMPLC(residdq3, dq30)
q1 = INTEG(dq1, q10); q2 = ...
END ! of Derivative

If a standard integration algorithm is chosen (via
IALG-parameter), the algebraic loop for the second de-
rivatives ddqx within the IMPLC statement and the
equations for the variables residxx is broken by a
Newton-Raphson iteration within each evaluation of
the derivatives. Since version 10.2 ACSL offers also
the DASSL-Code for direct integration of implicit
equations. If this algorithm is chosen theresidxx vari-
ables represent the residuum for the algorithm. In order
to compare these two implicit methods also a "classi-
cal" approach was programmed.

DERIVATIVE ! Explicit Dynamic model
ma11 = th1+2*th2*c2+th3; ma12 = ...
b1 = t1+th2*(2*dq1*dq2+dq2**2)*s2; b2 = ...
det = ma11*ma22 – ma12*ma21
ddq1 = (ma22*b1 – ma12*b2)/det
ddq2 = (ma11*b2 – ma21*b1)/det
ddq3 = b3/ma33
dq1 = INTEG(ddq1,dq10); dq2 = ...
q1 = INTEG(dq1, q10); q2 = ...
END ! of Derivative

From the viewpoint of implementation, the implicit
method is to be preferred. It is very
simple to formulate whereas the
symbolic inversion of the mass ma-
trix would be practically impossible
in case of a large system. A numeri-
cal inversion of the mass matrix
could be implemented by means of
external FORTRAN subroutines.

Point to Point Control
(Task b): Servo motors and control
can be easily implemented by stan-
dard modelling features of ACSL like the limiting inte-
grator LIMINT. Figure 1 shows the results for the joint
angles using the DASSL Code. The following table

compares the normalised simulation times for a simula-
tion over 2 sec (execution is very fast because ACSL is a
compiling simulator). As expected the DASSL Code is
faster than the iterative loop breaking method using a
standard Runge-Kutta algorithm. However, in this case
the explicit model is still significantly faster.

Model Description Implicit Explicit
Integr. Algorithm
(Stepsize 0.005 s)

RK-4
IALG=5

DASSL
IALG=10

RK-4
IALG=5

Norm. CPU-time 1.0 0.86 0.12
Computation times on a HP715/100, ACSL Vers.11

Obstacle avoidance (Task c): State events may be
described in ACSL by DISCRETE Sections that are
managed by SCHEDULE operators which start an itera-
tive state event locating routine.

For collision avoidance two such sections are used:
Obs_Stop is activated if the distance d to the obstacle
borderline falls below the critical distance dcr and if
the alarm switch alon is set. Within this first DIS-
CRETE Section the target position for the joint angles is
changed temporarily and set to the momentary position.
To guarantee maximum deceleration the voltage limits
LmU are changed to the maximum values MxU. The sec-
ond DISCRETE Section Obs_Clear resets all modified
parameters when the tool-tip position q3 has reached a
level above the obstacle height (q3-hobs = h > 0).

SCHEDULE Obs_Stop .XN.(alon*(d-dcr)+ aloff)
SCHEDULE Obs_Clear .XP. h
:
DISCRETE Obs_Stop
q1tp=q1; q2tp=q2;LmU1=MxU1; LmU2=MxU2
alon = 0; aloff = 1.d0
END ! obs_stop
DISCRETE Obs_Clear
q1tp=q1fin; q2tpc=q2fin;
LmU1=OpU1;LmU2=OpU2; alon=0;aloff=1
END ! obs_clear

Figure 2 shows that the x-position of the tool-tip does
not cross the obstacle borderline (dashed line) until the
tool-tip height has reached a positive height above the
obstacle. Identical results were obtained with the im-
plicit model description using standard integrators and
the DASSL-code. However, a considerable increase in
computational time was observed for the last-named,
caused by the usage of state events.

Horst Ecker, Institute for Machine Dynamics and
Measurement, TU-Vienna, Wiedner Hauptstr. 8-10, A-
1040 Vienna/Austria, email: hecker@email.tuwien.ac.at

Figure 1 Figure 2

