
+++ C10 ‘Din ing Phi losophers’ – Statechart Model l ing in Simulink/Statef low +++

39

SN
E 1

8
/1

, A
pril 2

0
08

Statechart Modelling for ARGESIM Benchmark C10 ‘Dining
Philosophers Problem II’ using Simulink/Stateflow

Voin Legourski, Yilin Huang, Ondrej Cevan, F. Breitenecker, Vienna Univ. of Technology, Austria

imulator: Simulink is a MATLAB extension
allowing rapid and accurate building of computer

models of dynamical systems using block diagram
notation. With Simulink one can model complex
nonlinear systems using continuous and discrete-time
components. Particularly important for our compari-
son is the state-flow extension to Simulink. State-
flow provides a powerful environment with which
one can add finite state machines into the Simulink
models. It is build around the state-chart formalism.

odel: The system described by the ‘Dining
philosophers’ Problem” does consist of five

philosophers who are sitting at a round table, on the
table in front of each of them is located a bowl of
food. To eat from the bowl a philosopher needs two
chopsticks. The problem lies within the sticks, as
there are only five sticks available to the philoso-
phers– one between each bowl, two neighbors cannot
eat at the same time. The philosophers can be in 3
resp. 4 states: thinking, eating and waiting (waiting
for left and right stick; Figure 1- Stateflow model).

If any of the philosophers wants to grab a chopstick a
request needs to be sent to the chopstick subsystem in
order to check whether the chopstick is available. A
chopstick subsystem controls use of the chopsticks,
with two inputs and two outputs. The inputs are func-
tion calls that trigger two function-call subsystems:
chopstickR and chopstickL (Figure 2). The outputs
signal whether the chopstick is available for one of
the two philosophers that compete for the chopstick.

The subsystems (chopstickR/L) are modeled by a
state-chart and if a philosopher calls the subsystem
once, the state-chart is activated and checks whether
the subsystem is already using the
chopstick. The calling philosopher
will receive a “ticket” for the chop-
stick in case the condition returns
true, which means that the chop-
stick can be used. If the philosopher
calls the subsystem the second time
(while using the stick) the condition
[havingChopstick] returns the
ticket for the chopstick.

S

Figure 2. Function call subsystems of a chopstick

M

Figure 3. Stateflow diagram of philosopher 3

Figure 1. “Dining Philosophers” model, top level

+++ C10 ‘Dining Phi losophers’ − Statechart Model l ing in Simulink/Statef low +++

SN
E

1
8
/1

,
A
pr
il

2
0
0
8

40

The philosophers’ state-chart consists of one graphi-
cal function and one super state called philosophers
and which contains six parallel (AND) states (Figure
3). These are independent and can be active at the
same time. Five of these states represent philosophers
and the sixth one has a deadlock monitoring function.

Although parallel states execute concurrently, they
are not activated at the same time. State-flow deter-
mines when to activate them during simulation ac-
cording to priorities. This means, the states are acti-
vated in a defined order which can be configured by
the user. This feature was used to solve the conflict of
simultaneous access. Here the priorities were set in
such a way that philosophers to the right side of a
stick have higher priority than those to the left of it.

Because the philosophers are sitting in a ring (phi-
losopher1-philosopher2-philosopher3-philosopher4-
philosopher5-philosopher1), the philosopher5 has
lower priority then philosopher1 and still needs to
win the access to its left chopstick. This was solved
by letting philospher5 pick up its left chopstick one
time step before entering “waiting for left stick” state.
The same consideration leads us to a very similar
solution when our philosophers return their chop-
sticks.

With this way of assigning and returning chopsticks
to/from philosophers we created a model that needs 0
time steps for “housekeeping” in which it is possible
to receive both chopsticks during one transition (from
“thinking” into the “eating” state) – if both sticks are
available. Eating state is divided into two states: eat-
ing_state and eating_one_more_step. Entering and
leaving a state takes at least one time step.

-Task: In order to evaluate the model, we
needed to add some more variables into the

state-flow charts for measuring time to wait and to
export the data to the MATLAB workspace. The
chopstick utilization was evaluated with an extra
state-flow chart which simply counted the number of
time steps a chopstick was used. The simulation was
started by MATLAB and stopped if a deadlock was.
The simulation ran for 5 356 896 time steps. MAT-
LAB evaluation results in Table 1 and Table 2.

-Task: In order to perform this task as fast as
possible we removed from the model commands

needed for the evaluation of time to wait and chop-
stick utilization. The simulations were executed with
a simple FOR loop from the MATLAB environment.

c1 c2 c3 c4 c5 all
0.9245 0.9245 0.9241 0.9244 0.9243 0.9244

Table 2: Chopstick utilization (mean)

Before the start, the time2deadlock variable was ini-
tialized. The resulting times are exported into MAT-
LAB workspace. After performing 50 runs the maxi-
mum termination time lay with 21,788,589 time
steps, the minimum with 68,994 and the average
simulation took 4,666,830 time steps.

A deadlock state can be reached only if all philoso-
phers decide to leave the thinking state at the same
time step, and thus grab their left chopsticks concur-
rently. To detect this, every time a philosopher leaves
thinking state the global variable deadlock_counter is
increased by one. This variable is checked at the end
of each time step by the state deadlock_checking (the
sixth (AND) state in the philosophers super state). If
equaling less than five, the value of the variable is
reset to 0. In the case all the philosophers increased
the variable, deadlock_counter equals 5 (equivalent
to a deadlock). Thus the simulation is terminated and
the current time sent to MATLAB.

esumé: Stateflow indeed provided a solid base
for modeling and performing the tasks of this

benchmark. The problems of simultaneous access
respectively the correct implementation of accurate
access to the chopsticks was achieved by a simple,
yet efficient workaround. Simulation results were
easily acquired and exported into MATLAB.

F. Breitenecker, Vienna Univ. of Technology, Austria

Received: June 28, 2007
Revised: November 17, 2007; January 18, 2008
Accepted: February 10, 2008

Table 1: Philosophers times in respective states (mean and
standard deviation)

A

B

R

