

A Petri Net – based solution to ARGESIM Comparison C10 'Dining Philosophers II' using MATLAB and PetriSim

Thomas Löscher, Felix Breitenecker, Vienna Univ. of Technology; thomas@loescher.at

Simulator. This comparison solution was performed with a MATLAB toolbox "PetriSim", which is freely available. This toolbox offers a GUI for modelling classical and timed state / transition Petri nets and three operation modes: net analysis (P/T invariants, coverability tree, etc.) for S/T nets, simulation with conflict resolution strategies for S/T nets, and time simulation with conflict resolution, prioritisation and control of firing sequences for timed S/T nets.

Petri Net model. Five philosophers are sitting around a table. They are all going through the same cycles, starting with a thinking-phase, followed by a hungry state and then eating-phase (Figure 1). The problem is that every philosopher needs two chopsticks to eat, but between the philosophers it is only one available: each philosopher must share chopsticks with his neighbours, leading to simultaneous access to the same chopstick and occurrence of deadlock.

Task a: Single simulation run. Time for thinking and eating follows a discrete uniform distribution in the interval (1,10), whereby for modelling timed S/T nets were used. The toolbox allows gathering statistical data from a simulation, given in Table 1.

	thinking	eating	waiting		util.
P1	5,50+/- 2,87	5,44+/- 2,86	11,50+/- 8,08	C1	92,07%
P2	5,48+/- 2,86	5,51+/- 2,86	11,46+/- 8,04	C2	91,73%
P3	5,54+/- 2,87	5,51+/- 2,85	11,39+/- 8,08	C3	91,95%
P4	5,52+7- 2,87	5,44+/- 2,85	11,53+/- 7,95	C4	91,84%
P5	5,50+/- 2,90	5,56+/- 2,89	11,45+7- 8,04	C5	91,86%
all	5,50+/- 2,87	5,49+/- 2,86	11,47+/- 8,04	all	91,89%

Table 1: Results Average times (+/- standard deviation) of thinking, waiting and eating periods; rate of chopstick utilisation:

Priority wizard		<u> </u>	
1. Select the type of the group => C	sequence priority		
 Select the transitions for the group and define the vector. Repeat steps 1 and 2 to add several groups 			Figure 2: Priority wizard
Cancel Priority Sequence	Delete	Exit	
Priority: left, left, left, left			

Task b: Simultaneous access. In a simultaneous
access situation the philosopher sitting
on the right gets the chopstick first and
the philosopher to his left must wait. In
the Petri net model this was realized with
the prioritisation wizard (Figure 2). In
case of a conflict the transitions which
take the left chopsticks are higher priori-
tized than those which take the right
chopsticks.

Task c: 50 Simulation runs – deadlock detection. Due to the Petri net basis the simulation ends if a deadlock occurs. Therefore the deadlock detection is the end of the simulation.

In the present version the PetriSim toolbox is relatively slow, so that 50 simulation runs until a deadlock do not seem practicable

C10 Classification: Petri Net Approach Simulator: MATLAB Rel.14, PetriSim Toolbox