

 33 July 2002

SIMULATION NEWS EUROPE

C
O

M
P

A
R

IS
O

N
S

Issue 34

 .
C10 Dining Philosophers II –
AnyLogic
Simulation / Process Flow

Simulator: AnyLogic (wwwwww..xxjjtteekk..ccoomm) is a gen-
eral-purpose simulator for simulation of both discrete
and continuous systems. AnyLogic is fully based on
the programming language Java and with knowledge
of Java one can write own code and extend the fea-
tures of AnyLogic.

Model: Five philosophers are sitting around a ta-
ble. They are all going through the same cycles, start-
ing out with a thinking-phase, followed by a hungry
state and then eating-phase. The problem is that eve-
ry philosopher needs two chopsticks to eat, but be-
tween the philosophers it is only one available: each
philosopher must share chopsticks with his neigh-
bours, leading to simultaneous access to the same
chopstick and occurrence of deadlock.

Fig.1: Philosopher objects, communicating with messages to
the neighbour (left), state chart for each philosopher (right)

Implementation. We chose to implement our

model in an object-oriented manner. First we defined
the philosopher object containing a statechart with
four different states being: Thinking, Waiting left, Wait-
ing right, Eating. Then we defined eating table as the
root object with five philosophers as encapsulated ob-
jects (Figure 1).

The philosophers are communicating with their
neighbours through public ports through which they
are sending and receiving message. We defined three
message classes: Left free, Right free, Block

The philosophers start with a thinking period,
which follows a discrete uniform distribution in the in-
terval [1,10]. When one finishes his thinking period he
continues into the waiting left state.

In entering this state he sends a message to his
neighbours saying that the chopsticks are free. Him
self waits for the same message from his left side. Af-
ter receiving this message he goes on the waiting
right state signalling his right that the chopstick is still
free and blocking the left. When he gets the right free
signal from his right he starts eating blocking his
neighbours. The eating period follows the same dis-
crete distribution as the thinking period after which he
returns to the thinking phase.

Task a. Simulation until Deadlock with Utilisa-
tion Statistics. The first simulation run, after compil-
ing into Java, stopped with a deadlock at t = 19180;
results are shown in the following tables.

Thinking Waiting Eating
Phil1 5.04±2.58 13.98±6.20 5.37±2.54
Phil2 5.07±2.57 13.81±6.12 5.39±2.53
Phil3 5.19±2.51 13.71±6.13 5.25±2.56
Phil4 5.11±2.51 13.71±6.20 5.21±2.58
Phil5 5.19±2.58 13.75±6.16 5.23±2.55

Average 5.02±2.57 13.76±6.25 5.29±2.34

Table 1: Average Times for thinking, waiting and eating for
each philosopher and for all together

Ch1 Ch2 Ch3 Ch4 Ch5 ChAll
0.218 0.219 0.217 0.217 0.219 0.2186

Table 2: Average Usage rate of each chopstick and
of all chopsticks together

Task b. Handling Simultaneous Access to
Chopsticks. AnyLogic handles simultaneous events
on a random basis. This means that when two philos-
ophers try to access the same chopstick at the same
time, AnyLogic chooses randomly between the two. If
the event granted access schedules another event,
this event is placed behind the event, which was
fighting for access to the chopstick.

Task c. Batch of Simulation Runs with
Deadlock Statistics. AnyLogic detects a deadlock
when no new events are scheduled and the event list
becomes empty. This causes the simulation to stop, in
our case when all the philosophers are waiting for the
chopstick to the right of them, already having grabbed
the left one (results given in Table 3.

Number of runs 50
Maximum time of termination 49465
Minimum time of termination 1417

Table 3: Maximum and minimum deadlock time,
batch of 50 simulation runs

Franz Holzer, TU Vienna
ffhhoollzzeerr@@ffssmmaatt..hhttuu..ttuuwwiieenn..aacc..aatt

Henning Nilsen, Univ. Trondheim
nniillsseennnnoorrggee@@hhoottmmaaiill..ccoomm

