Comparison 7: Constrained Pendulum

This comparison tests features of simulation languages regarding state events, comparison of models, and parameter variation. The system under investigation is a constrained pendulum.

The motion of the pendulum is given by the equation

$$m l \ddot{\phi} = -m g \sin \phi - d l \dot{\phi}$$

where φ denotes the angle measured in radians counterclockwise from the vertical position. The parameters m and l characterize the pendulum with mass m and length l, d is a damping factor.

If the pendulum is swinging, it may hit a pin positioned at angle φ_p with distance l_p from the point of suspension. In this case the pendulum swings on with the position of the pin as the point of rotation and the shortened length $l_s = l - l_p$.

Note that the angular velocity $\dot{\phi}$ is defined now with respect to the new point of rotation; therefore the angular velocity

 $\dot{\phi}$ is changed at position ϕ_p from $\dot{\phi}$ to $\dot{\phi} \frac{l}{l_s}$.

The above equations remain valid.

If the pendulum swings back and passes φ_p , the pendulum behaves as before with length l, and the angular velocity $\dot{\varphi}$ is changed at φ_p from $\dot{\varphi}$ to $\dot{\varphi} \frac{l_s}{l}$, and so on.

General parameters for the following tasks are m = 1.02, l = 1, $l_p = 0.7$ ($l_s = 0.3$), g = 9.81

Task a): Simulate the motion of the pendulum with the following initial conditions and plot φ over t:

i)
$$\varphi_o = \frac{\pi}{6}$$
, $\dot{\varphi}_o = 0$, $d = 0.2$, $\varphi_p = -\frac{\pi}{12}$, $t \in [0,10]$

ii)
$$\varphi_o = -\frac{\pi}{6}$$
, $\dot{\varphi}_o = 0$, $d = 0.1$, $\varphi_p = -\frac{\pi}{12}$, $t \in [0,10]$ (the pin is left of the pendulum)

Task b): The equations can be linearized giving the linear model

$$m l \ddot{\varphi}_L = -m g \varphi_L - d l \dot{\varphi}_L$$

Implement the linear model and compare the results of non-linear and linear model by plotting ϕ and ϕ_L together and the deviation over t for

$$\varphi_o = \varphi_{Lo} = \frac{\pi}{12}, \ \dot{\varphi}_o = \dot{\varphi}_{Lo} = 0,$$

$$\varphi_p = -\frac{\pi}{24} \; , \; d = 0.2, \; t \; \varepsilon \; [0,10].$$

Indicate, whether the language permits comparison of sequential simulation runs of the different models, or whether the two models must be run simultaneously as a single simulation.

Task c): For

$$\varphi_o = \frac{\pi}{6}, \ \varphi_p = -\frac{\pi}{12}, \ d = 0.2$$

determine the initial angular velocity $\dot{\phi}_0$ so that the maximum angle of the shortened pendulum ϕ reaches exactly $-\sqrt[4]{2}$. Indicate experimentation commands or model changes for automatic or manual variation of initial angular velocity

φο.

F. Breitenecker