
+++ ARGESIM Comparisons and Benchmarks - Solutions ++
SN

E 16/1 (46), A
ugust 2006

33

S
imulator: DSOL is an open source, Java based

suite for continuous and discrete event simulation.

DSOL is written with distributed computing in mind

and supports distributed models. Models are imple-

mented in Java code. DSOL offers facilities for gra-

phical data evaluation like charts but also supports 2D

and 3D animation. There are predefined classes for

standard entities like generators, stations and resour-

ces. There is also a big library of statistic classes,

including distributions and tallies which compute

mean and standard deviation automatically.

Model / Implementation of Strategies for tasks.

Model and experiments (tasks) of C6 are imple-

mented using one class for each station (registration,

casualty ward, x-ray and plaster). There is just one

casualty ward object hiding the details of two wards

with two doctors each. Additionally a patient source

and a patient sink are used, primary for evaluation

purposes and implementation details. The patients

themselves are a class also and know the details about

their path through the hospital and their priority for

taskbc. The glue between all the classes is DSOL's

event mechanism.

The patient source schedules a goto next station
event for newly created patients and re-schedules the

create patient event as long as needed.

The patient schedules an arrival event on his next sta-

tion and gets queued there. As soon as the station tre-

ated the patient it will create an goto next station
event for the patient and reschedule itself as long as

there are patients queueing. The patient sink termina-

tes this mechanism and stops the simulation when all

patients left the hospital.

The method getNextStation returns the next target of

the patient. In that way only the patient has to know

about his way through the hospital, so new types of

patient could be added easily.

Each station implements a queuePatient method,

basically re-scheduling itself: in pseudo code:

void queuePatient(Patient p) {
if (queue.isEmpty()) {
queue.add(p);
scheduleProcessing(drawStationDelay());

} else{
queue.add(p); } }

The last missing puzzle piece is the implementation of

scheduleProcessing which draws a random delay

and after that delay calls a method named processing.

This method in pseudo code:

void processing() {
p = queue.pop();
p.notify();
if (!queue.isEmpty()) {
scheduleProcesing(drawStationDelay());}}

It basically takes the first patient from the queue and

puts him to the next station. If there are still patients

left it is re-schedules itself. The patient sink finally

stops the mechanism by implementing a method,

which writes statistically data to the experiment data-

base (to be examined by the DSOL GUI).

Tasks a -c: Different strategies for operation. As

special actions (change of doctors) and priorities

are programmed directly in the method definitions, no

further effort is necessary for complete the more com-

plex tasks b and c.

Results for 50 simulation runs are given in Tablei1

below. In general, results from taskib are almost

identically to taskia, so swapping doctors seems to

have no effect. Taskic shows improvements of the

priority strategy: although the overall treatment time

for all patients did not change, the overall treatment

time for each patient is reduced.

Table 1: Mean and standard deviation for treatment times.

Classification: Programmed DEVS library-based approach.

Corresponding Author: Felix Breitenecker

Roland Lezuo, Felix Breitenecker, Vienna Univ. of

Technology, Inst. f. Analysis and Scientific Computation,

Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria;

fbreiten@osiris.tuwien.ac.at

Received: October 24, 2005

Revised: January 23, 2006

Accepted: March 30, 2006

A Programmed Solution to ARGESIM Comparison

C 6 ‘Emergency Department’ with DSOL, a Java- based Suite
Roland Lezuo, Felix Breitenecker, Vienna Univ. of Technology, Austria; fbreiten@osiris.tuwien.ac.at

Type sm[a] sd[a] sm[b] sd[b] sm[c] sd[c]

1 205 12.47 215 13.16 169 14.97

2 98 14.13 99 12.63 109 15.68

3 286 22.22 287 17.52 165 21.63

4 98 4.81 106 5.97 122 6.18

all 171 13.41 176 12.32 141 14.62

