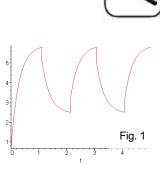
C5 Two State Model – Maple 7 Semi-Analytical approach

Simulator: Maple 7 is a computer algebra system which is mainly used for symbolic calculation but it also includes numerical features. It provides a vast library of built-in functions and operations and allows arbitrary high accuracy by making it possible to change the numbers of digits carried in floats.


Model: This solution makes use of Maple's integrated ODE solver dsolve. The function dsolve is able to handle different types of problems by using classification and symmetry methods. In this special case it classifies the system as a system of first order linear differential equations and gives the solution in the analytical form $y_1(t)=k_1 \cdot \exp(-?_1 \cdot t)+k_2 \cdot \exp(-?_2 \cdot t)+c$. As Maple uses symbolical calculation, first the equations are solved with unknown parameters c1, c2, c3 and c4. The particular values are substituted into the solution. The search for the time instants of the change of states is realised by a modified bisection method. First the discontinuity is searched for with step size 0.01. Then the step size is divided by 10 and the last interval is inspected again. The process is iterated until a given step size (step bound) is reached. This method makes it possible to find the discontinuities in reasonable time and with a sufficient accuracy.

Results Task Simulation in time main- switching tim and final value. T table at the right sho the time for every cated discontinuity and the value of $y_1(5)$.

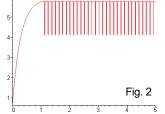
a:	t ₁	1.10830616780000		
do-	t ₂	2.12968535520000		
ies	t ₃	3.05415290710000		
The	t4	4.07553209450000		
ws	t ₅	4.99999964640000		
lo-	y₁(5)	5.36944281876194		
nd the value of $v_1(5)$				

Figure 1 shows the graph of y₁ over time. The result was calculated with step bound of 10⁻¹⁰ and Digits: =15.

Task b: Influence of accuracy on solution. Accuracy

can be varied in this model by two parameters. First by Maple's environment variable Digits, which controls the number of digits that Maple uses when calculating with floating-point numbers and second by the variable step bound, which determines the minimum step size for the time loop. The next tables show the results for different values of these parameters.

v/(5)


y ₁ (J).			
step	Digits=15	Digits=20	Digits=30
10 ⁻⁶	5.79999908	5.79999908287	5.79999908287093
	287094	09388255	882550066486064
10 ⁻¹⁰	5.36944281	5.36944281876	5.36944281876190
	876194	19019434	194324447677611
10-14	5.36931208	5.36931214700	5.36931214700633
	829560	63303554	035514320327283

Time of last discontinuity:

step	Digits=15	Digits=20	Digits=30
10-6	-	-	-
10 ⁻¹⁰	4.9999996464	4.9999996464	4.9999996464
10-14	4.9999996462 2025	4.9999996462 2034	4.9999996462 2034

With a step size of 10^{-6} the last discontinuity is not found. Step size 10^{-10} is already small enough to produce result with adequate accuracy.

Task d: Highly oscillating solution. The change of the state 2 parameter values causes a high frequent oscillating behaviour of y with 62 discontinuities. The table below shows the

first and last discontinuities computed with step bound:=10⁻¹⁴ and Digits:=20. The final value of y1 is 5.7804025205614051442.

t ₁	1.10830616777114	t ₂	1.12172996789144
t ₃	1.23546396574812	t4	1.24888776586842
t ₅₉	4.79588230910372	t ₆₀	4.80930610922402
t ₆₁	4.92304010708071	t ₆₂	4.93646390720101

Eva Pazourek, Elisabeth Wolfmayr e9825427@student.tuwien.ac.at

β

30