
+++ C5 − MATLAB ODE Solver Comparison +++

33

SN
E 1

8
/1

, A
p
ril 2

0
0
8

Comparing ODE Solvers for to ARGESIM Benchmark C5
‘Two State Model’ using MATLAB

Florian Judex, Florian Plug, Ido Yehieli, Vienna University of Technology, Austria, efelo@fsmat.at

imulator: Matlab is a well-known general-
purpose mathematical programming language. It

offers a wealth of predefined functions especially
suited for implementing numerical algorithms. One of
those is ode15s, which implements a BDF method for
computing numerical solutions of stiff ordinary dif-
ferential equations and supports event detec-
tion/location. We compared solutions of C5 obtained
with ode15s with those obtained using a handwritten
solver using an implicit Runge-Kutta scheme based
on Gauss-Legendre quadrature and bisection (for
event location). Since C5 is easily solved analytically
(either manually, or using a computer algebra system
like Maple), we also compared those solutions to an
analytically obtained solution to judge their accuracy.

odel: Comparison 5 is a simple system of two
linear ordinary differential equations, given by

 1 1 1 2

3 3 40

c c c c
y y

c c c

    
         
 (1)

Parameters 2c and 4c depend on the current state of
the System (which can either be A or B), while 1c and

3c are kept constant over the whole integration inter-
val. The state is determined by two bounds AY and BY
– whenever 1y grows larger than AY in state A, the
system switches to state B, and conversely when 1y
becomes smaller than BY in state B the system
switches back to state A. The interesting cases arise
for values of 2c and 4c which produce periodic state
changes between A and B, and values of 1c and 3c
which turn the system into a stiff one.

ode15s operates on systems of ODEs given in the
form () (, ())y t f t y t together with zero or more
event functions ei (t, y). While integrating, the algo-
rithms monitors the event functions, and locates their
zeros-crossings. Two flags per event function specify
if only rising, only falling, or both directions of zero-
crossing shall be considered an event, and if the inte-
gration is to be continued or stopped upon detecting
an event. The step size is controlled by a local error
target passed to the algorithms. For more efficient and
accurate operation, the jacobian /f y  of (,)f y t can
be specified.

-Task: Comparison 5 is easily brought into the
form required by ode15s. The definitions of

(,)f y t and /f y  of are obvious, and for state-
change detection the two event functions 1(,)A Ae t y y Y 
and 1(,)B Be t y Y y  can be used – both set to con-
sider only rising zero-crossings. Because the descrip-
tion of ode15s is not entirely clear on how the algo-
rithm continues after a state change, both functions
were set to stop integration upon event detection, and
ode15s was called in a loop until the whole integra-
tion interval was covered.

The implemented algorithm treats state changes dif-
ferently – it requires the system of ODEs to be given
as ((), ()) (, (), (),)y t s t f t y t s t p , with (, , ,)f t y s p linear
in y (It could be extended to support nonlinear sys-
tems rather easily, though) and ()s t specifying the
current state of the system. The value for p is speci-
fied when calling the solver algorithm, and it passed
down to the individual evaluations f. This allows
parameterization of the system of ODEs without
resorting to global variables. (, , ,)f t y s p must not only
calculate the derivative of y , but also the new state of
the system. Whenever the returned value of ()s t dif-
fers from the one that was passed to (, , ,)f t y s p , the
algorithms treats this as a state event. The algorithm
takes another argument specifying a global error
target that it tries to meet.

The author’s algorithm integrates along the integra-
tion interval, at each step controlling the step size by
computing a local error estimate and comparing it to
some local error target. When it encounters a state
change event (()s t changes), it locates the precise
time of the state change using bisection. It then re-
computes the solution starting from the last state
change (or the start of the integration interval) on a
twice as fine grid, and computes a global error esti-
mate by comparing the two solutions. If this estimate
meets the requested global error target, it proceeds by
restarting the integration using the last computed ()y t
and ()s t as the new initial values. If the estimate
doesn’t meet the global error target, the integration
restarts at the last state change, with a suitably re-
duced local error target.

S

M

A

+++ C5 − MATLAB ODE Solver Comparison +++

SN
E

1
8
/1

,
A

p
ri

l
2
0
0
8

34

Each step is computed using a fully implicit 4-state
Runge-Kutta scheme to accommodate the stiffness of
the problem. The coefficients for that 4-state IRK
scheme were obtained by Gauss-Legendre quadra-
ture, and therefore yield an 8th order scheme.

Figure 1 shows the results obtained with the imple-
mented solver.

-Task: For better results, the analytical solution
was used to compute the zero Crossings given in

Table 1.

-Task: Since only our handwritten solver sup-
ports global error estimation, the accuracy was

interpreted as the global error target for our handwrit-
ten solver, but at the local error target for ode15s.

Table 2 shows the results produced by do_test for
three different accuracies (10-6, 10-10 and 10-14).

-Task: Using the same test setup as for the
tasks b and c also the results for the other set of

parameters werce computed, yielding a much higher
oscillation frequency. The results of this experiment
can be found in Table 3.

These results show a similar relationship between the
errors produces by ode15s compared to those of our
handwritten algorithmn as tasks b and c. Since the
last state change (tN in the results table) lays further
away from 5 for this set of parameters, y returns to a
smaller value before reaching the end of the integra-
tion interval. This eliminates the large difference
between the relative errors of  1 5y and  2 5y .

esumé: The implemented IRK algorithm ful-
filled the authors expectations fully. It only re-

mains to be implemented according to the MATLAB
standard for ODE solvers.

Corresponding author: Florian Judex,
Department of Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
efelo@fsmat.at

Received: June 28, 2007
Revised: November 17, 2007
Revised: March 3, 2008
Accepted: March 10, 2008

Figure 1. Plot of the solution

B

 10-11
 Analytical IRK

(rel. err.)
ode15s
(rel.err.)

t1 1.108306167 1e-14 2e-9

t2 1.121729967 1e-14 2e-7

tn-2 4.809306109 5e-14 2e-6

tn-1 4.923040107 5e-14 2e-6

tn 4.936463907 5e-14 2e-6

Y1(5) 5.780402520 2e-14 6e-7

Y2(5) 5.380402678 2e-14 9e-7

Table 3: Results for Task D

C

 10-6 10-10 10-14
 IRK

(rel. err.)
ode15s
(rel.err.)

IRK
(rel. err.)

ode15s
(rel.err.)

IRK
(rel. err.)

ode15s
(rel.err.)

t1 4e-14 2e-9 4e-15 2e-9 7e-15 2e-9

t2 2e-14 7e-7 1e-15 4e-9 2e-15 4e-9

t3 6e-15 5e-7 3e-16 6e-9 2e-16 6e-9

t4 5e-15 7e-7 1e-15 6e-9 2e-16 6e-9

t5 4e-15 6e-7 1e-15 7e-9 5e-16 7e-9

y1(5) 4e-9 5e-2 9e-10 4e-3 4e-10 4e-3

y2(5) 3e-14 5e-6 1e-14 6e-8 5e-15 7e-9

Table 2: Accuracy of the Algorithms

 Analytical
t1 1.1083061677711285586

t2 2.1296853551547112460

t3 3.0541529069957142895

t4 4.0755320943792971988

t5 4.9999996462203002423

y1(5) 5.3693121180964613615

y2(5) 5.3999967644598712013

Table 1. Zero Crossings

D

R

