
+++ C5 −  MATLAB ODE Solver  Comparison +++  

33

SN
E 1

8
/1

, A
p
ril 2

0
0
8

Comparing ODE Solvers for  to ARGESIM Benchmark C5  
‘Two State Model’ using MATLAB 

Florian Judex, Florian Plug, Ido Yehieli, Vienna University of Technology, Austria, efelo@fsmat.at 

imulator:   Matlab is a well-known general-
purpose mathematical programming language. It 

offers a wealth of predefined functions especially 
suited for implementing numerical algorithms. One of 
those is ode15s, which implements a BDF method for 
computing numerical solutions of stiff ordinary dif-
ferential equations and supports event detec-
tion/location. We compared solutions of C5 obtained 
with ode15s with those obtained using a handwritten 
solver using an implicit Runge-Kutta scheme based 
on Gauss-Legendre quadrature and bisection (for 
event location). Since C5 is easily solved analytically 
(either manually, or using a computer algebra system 
like Maple), we also compared those solutions to an 
analytically obtained solution to judge their accuracy. 

odel:   Comparison 5 is a simple system of two 
linear ordinary differential equations, given by 
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Parameters 2c  and 4c  depend on the current state of 
the System (which can either be A or B), while 1c  and 

3c  are kept constant over the whole integration inter-
val. The state is determined by two bounds AY  and BY  
– whenever 1y  grows larger than AY  in state A, the 
system switches to state B, and conversely when 1y  
becomes smaller than BY  in state B the system 
switches back to state A. The interesting cases arise 
for values of 2c  and 4c  which produce periodic state 
changes between A and B, and values of 1c  and 3c  
which turn the system into a stiff one. 

ode15s operates on systems of ODEs given in the 
form ( ) ( , ( ))y t f t y t  together with zero or more 
event functions ei (t, y). While integrating, the algo-
rithms monitors the event functions, and locates their 
zeros-crossings. Two flags per event function specify 
if only rising, only falling, or both directions of zero-
crossing shall be considered an event, and if the inte-
gration is to be continued or stopped upon detecting 
an event. The step size is controlled by a local error 
target passed to the algorithms. For more efficient and 
accurate operation, the jacobian /f y   of ( , )f y t  can 
be specified. 

-Task:   Comparison 5 is easily brought into the 
form required by ode15s. The definitions of 

( , )f y t  and /f y   of are obvious, and for state-
change detection the two event functions 1( , )A Ae t y y Y   
and 1( , )B Be t y Y y   can be used – both set to con-
sider only rising zero-crossings. Because the descrip-
tion of ode15s is not entirely clear on how the algo-
rithm continues after a state change, both functions 
were set to stop integration upon event detection, and 
ode15s was called in a loop until the whole integra-
tion interval was covered. 

The implemented algorithm treats state changes dif-
ferently – it requires the system of ODEs to be given 
as ( ( ), ( )) ( , ( ), ( ), )y t s t f t y t s t p , with ( , , , )f t y s p  linear 
in y  (It could be extended to support nonlinear sys-
tems rather easily, though) and ( )s t  specifying the 
current state of the system. The value for p is speci-
fied when calling the solver algorithm, and it passed 
down to the individual evaluations f. This allows 
parameterization of the system of ODEs without 
resorting to global variables. ( , , , )f t y s p  must not only 
calculate the derivative of y , but also the new state of 
the system. Whenever the returned value of ( )s t  dif-
fers from the one that was passed to ( , , , )f t y s p , the 
algorithms treats this as a state event. The algorithm 
takes another argument specifying a global error 
target that it tries to meet. 

The author’s algorithm integrates along the integra-
tion interval, at each step controlling the step size by 
computing a local error estimate and comparing it to 
some local error target. When it encounters a state 
change event ( ( )s t  changes), it locates the precise 
time of the state change using bisection. It then re-
computes the solution starting from the last state 
change (or the start of the integration interval) on a 
twice as fine grid, and computes a global error esti-
mate by comparing the two solutions. If this estimate 
meets the requested global error target, it proceeds by 
restarting the integration using the last computed ( )y t  
and ( )s t  as the new initial values. If the estimate 
doesn’t meet the global error target, the integration 
restarts at the last state change, with a suitably re-
duced local error target. 
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Each step is computed using a fully implicit 4-state 
Runge-Kutta scheme to accommodate the stiffness of 
the problem. The coefficients for that 4-state IRK 
scheme were obtained by Gauss-Legendre quadra-
ture, and therefore yield an 8th order scheme. 

Figure 1 shows the results obtained with the imple-
mented solver. 

-Task:   For better results, the analytical solution 
was used to compute the zero Crossings given in 

Table 1. 

 

-Task:   Since only our handwritten solver sup-
ports global error estimation, the accuracy was 

interpreted as the global error target for our handwrit-
ten solver, but at the local error target for ode15s. 

Table 2 shows the results produced by do_test for 
three different accuracies (10-6, 10-10 and 10-14). 
 

-Task:   Using the same test setup as for the 
tasks b and c also the results for the other set of 

parameters werce computed, yielding a much higher 
oscillation frequency. The results of this experiment 
can be found in Table 3. 

These results show a similar relationship between the 
errors produces by ode15s compared to those of our 
handwritten algorithmn as tasks b and c. Since the 
last state change (tN in the results table) lays further 
away from 5 for this set of parameters, y  returns to a 
smaller value before reaching the end of the integra-
tion interval. This eliminates the large difference 
between the relative errors of  1 5y  and  2 5y . 
 

esumé:   The implemented IRK algorithm ful-
filled the authors expectations fully. It only re-

mains to be implemented according to the MATLAB 
standard for ODE solvers. 
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Figure 1. Plot of the solution 

B 

  10-11 
 Analytical IRK 

(rel. err.) 
ode15s 
(rel.err.)

t1 1.108306167 1e-14 2e-9 

t2 1.121729967 1e-14 2e-7 

tn-2 4.809306109 5e-14 2e-6 

tn-1 4.923040107 5e-14 2e-6 

tn 4.936463907 5e-14 2e-6 

Y1(5) 5.780402520 2e-14 6e-7 

Y2(5) 5.380402678 2e-14 9e-7 

Table 3: Results for Task D 

C 

 10-6 10-10 10-14 
 IRK 

(rel. err.)
ode15s 
(rel.err.)

IRK 
(rel. err.) 

ode15s 
(rel.err.) 

IRK 
(rel. err.)

ode15s 
(rel.err.)

t1 4e-14 2e-9 4e-15 2e-9 7e-15 2e-9 

t2 2e-14 7e-7 1e-15 4e-9 2e-15 4e-9 

t3 6e-15 5e-7 3e-16 6e-9 2e-16 6e-9 

t4 5e-15 7e-7 1e-15 6e-9 2e-16 6e-9 

t5 4e-15 6e-7 1e-15 7e-9 5e-16 7e-9 

y1(5) 4e-9 5e-2 9e-10 4e-3 4e-10 4e-3 

y2(5) 3e-14 5e-6 1e-14 6e-8 5e-15 7e-9 

Table 2: Accuracy of the Algorithms 

 Analytical 
t1 1.1083061677711285586 

t2 2.1296853551547112460 

t3 3.0541529069957142895 

t4 4.0755320943792971988 

t5 4.9999996462203002423 

y1(5) 5.3693121180964613615 

y2(5) 5.3999967644598712013 

Table 1. Zero Crossings 

D 

R




