+++ C5 - MATLAB ODE Solver Comparison +++

Comparing ODE Solvers for to ARGESIM Benchmark C5
‘Two State Model’ using MATLAB

Florian Judex, Florian Plug, Ido Yehieli, Vienna University of Technology, Austria, efelo@fsmat.at

Simulator: Matlab is a well-known general-
purpose mathematical programming language. It
offers a wealth of predefined functions especially
suited for implementing numerical algorithms. One of
those is odel5s, which implements a BDF method for
computing numerical solutions of stiff ordinary dif-
ferential equations and supports event detec-
tion/location. We compared solutions of C5 obtained
with odel5s with those obtained using a handwritten
solver using an implicit Runge-Kutta scheme based
on Gauss-Legendre quadrature and bisection (for
event location). Since CS5 is easily solved analytically
(either manually, or using a computer algebra system
like Maple), we also compared those solutions to an
analytically obtained solution to judge their accuracy.

odel: Comparison 5 is a simple system of two
linear ordinary differential equations, given by

. -G G S
y= Y+ (D
0 - C-Cy

Parameters ¢, and ¢, depend on the current state of
the System (which can either be A or B), while ¢, and
¢, are kept constant over the whole integration inter-
val. The state is determined by two bounds Y, and Y,
— whenever y, grows larger than Y, in state A, the
system switches to state B, and conversely when y,
becomes smaller than Y, in state B the system
switches back to state A. The interesting cases arise
for values of ¢, and ¢, which produce periodic state
changes between A and B, and values of ¢, and c,
which turn the system into a stiff one.

odel5s operates on systems of ODEs given in the
form y(¢)= f(t,y(t)) together with zero or more
event functions e, (¢,y). While integrating, the algo-
rithms monitors the event functions, and locates their
zeros-crossings. Two flags per event function specify
if only rising, only falling, or both directions of zero-
crossing shall be considered an event, and if the inte-
gration is to be continued or stopped upon detecting
an event. The step size is controlled by a local error
target passed to the algorithms. For more efficient and
accurate operation, the jacobian df /dy of f(y,t) can
be specified.

A-Task: Comparison 5 is easily brought into the
form required by odel5s. The definitions of
f(y,t) and of /0y of are obvious, and for state-
change detection the two event functions e(,y)=),-Y,
and e, (¢,y) =Y, — y, can be used — both set to con-
sider only rising zero-crossings. Because the descrip-
tion of odel5s is not entirely clear on how the algo-
rithm continues after a state change, both functions
were set to stop integration upon event detection, and
odel5s was called in a loop until the whole integra-
tion interval was covered.

The implemented algorithm treats state changes dif-
ferently — it requires the system of ODEs to be given
as (/(1),5(0)) = f (1, (1), 5(1), p), with f(z,y,s,p) linear
in y (It could be extended to support nonlinear sys-
tems rather easily, though) and s(¢) specifying the
current state of the system. The value for p is speci-
fied when calling the solver algorithm, and it passed
down to the individual evaluations f. This allows
parameterization of the system of ODEs without
resorting to global variables. f(t,y,s, p) must not only
calculate the derivative of y, but also the new state of
the system. Whenever the returned value of s(¢) dif-
fers from the one that was passed to f(¢,,s,p), the
algorithms treats this as a state event. The algorithm
takes another argument specifying a global error
target that it tries to meet.

The author’s algorithm integrates along the integra-
tion interval, at each step controlling the step size by
computing a local error estimate and comparing it to
some local error target. When it encounters a state
change event (s(f) changes), it locates the precise
time of the state change using bisection. It then re-
computes the solution starting from the last state
change (or the start of the integration interval) on a
twice as fine grid, and computes a global error esti-
mate by comparing the two solutions. If this estimate
meets the requested global error target, it proceeds by
restarting the integration using the last computed y(¢)
and s(¢) as the new initial values. If the estimate
doesn’t meet the global error target, the integration
restarts at the last state change, with a suitably re-
duced local error target.

Gy

8007 1tdy ‘L/81 ANS

SNE 18/1, April 2008

+++ C5 - MATLAB ODE Solver Comparison +++

Parameterset |

0.5 1 1.5 2 z5 a a5 4 4.5 5

Parameterset il

a o5 1 15 2 25 A 3as 4 4.5 5
[v, ¥a state |

Figure 1. Plot of the solution

Each step is computed using a fully implicit 4-state
Runge-Kutta scheme to accommodate the stiffness of
the problem. The coefficients for that 4-state IRK
scheme were obtained by Gauss-Legendre quadra-
ture, and therefore yield an 8" order scheme.

Figure 1 shows the results obtained with the imple-
mented solver.

B -Task: For better results, the analytical solution
was used to compute the zero Crossings given in
Table 1.

Analytical
.1083061677711285586
.1296853551547112460
.0541529069957142895
.0755320943792971988
.9999996462203002423
.3693121180964613615
.3999967644598712013

|
4 |
t |
t; |
ty |
ts |
i) |

ya(5) |

Table 1. Zero Crossings

o s s W N e

-Task: Since only our handwritten solver sup-

ports global error estimation, the accuracy was
interpreted as the global error target for our handwrit-
ten solver, but at the local error target for odel5s.

Table 2 shows the results produced by do_test for
three different accuracies (10, 10'% and 107%).

D-Task: Using the same test setup as for the
tasks b and c also the results for the other set of
parameters werce computed, yielding a much higher
oscillation frequency. The results of this experiment
can be found in Table 3.

10° | 10 | 10"
IRK | odel5s | IRK |odel5s| IRK | odelSs
(rel. err.) | (rel.err.) | (rel. err.) [(rel.err.) | (rel. err.) | (rel.err.)

ti | 4e-14 | 2e-9 | 4e-15| 2e-9 | Te-15 | 2e-9
t, | 2e-14 | 7e-7 | 1e-15 | 4e-9 | 2e-15 | 4e-9
t; | 6e-15| 5e-7 | 3e-16 | 6e-9 | 2e-16 | 6e-9
t, | 5e-15| 7e-7 | 1e-15 | 6e-9 | 2e-16 | 6e-9
ts | 4e-15| 6e-7 | 1e-15 | 7e-9 | 5e-16 | Te-9
vi(3)| 4e-9 | 5e-2 | 9e-10 | 4e-3 | 4e-10 | 4e-3
y2(5)| 3e-14 | 5e-6 | le-14 | 6e-8 | 5e-15 | 7e-9

Table 2: Accuracy of the Algorithms

| Nt
‘ Analytical IRK | odel5s
(rel. err.)|(rel.err.)

t |1.108306167| le-14 | 2e-9
t, |1.121729967| le-14 | 2e-7
t,y |4.809306109| 5e-14 | 2e-6
t,; |4.923040107| 5e-14 | 2e-6
t, |4.936463907| 5e-14 | 2e-6
Y,(5)|5.780402520| 2e-14 | 6e-7
Y,(5)|5.380402678| 2e-14 | 9e-7

Table 3: Results for Task D

These results show a similar relationship between the
errors produces by odelSs compared to those of our
handwritten algorithmn as tasks b and c. Since the
last state change (ty in the results table) lays further
away from 5 for this set of parameters, y returns to a
smaller value before reaching the end of the integra-
tion interval. This eliminates the large difference
between the relative errors of ¥,(5) and »,(5).

esumé: The implemented IRK algorithm ful-

filled the authors expectations fully. It only re-
mains to be implemented according to the MATLAB
standard for ODE solvers.

Corresponding author: Florian Judex,
Department of Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstrae 8-10, 1040 Vienna, Austria
efelo@fsmat.at

Received: June 28, 2007
Revised: November 17, 2007
Revised: March 3, 2008
Accepted: March 10, 2008

