
December 2003 52

C
O

M
P

A
R

S
IO

N
S

SIMULATION NEWS EUROPE

Is
s
u
e
 3

8
/3

9

An OO Process Approach to
ARGESIM Comparison C4 Dining
Philosophers with AnyLogic
M. Gyimesi, F. Breitenecker, TU Vienna
mmggyyiimmeessii@@oossiirriiss..ttuuwwiieenn..aacc..aatt

Simulator. AnyLogic (wwwwww..xxjjtteekk..ccoomm) is an object
– orientated, general-purpose simulator for discrete
but, continuous and hybrid applications. It supports
modelling with UML – RT and the underlying model-
ling technology is based on Java so that building
simulation models using AnyLogic should be easy for
experienced programmers.

Model: The implementation of the Dining Philoso-
pher model is made by defining three classes in a
very easy way. The classes are: Philosopher, Chop-
stick and Table. The Table - class defines the global
parameters and the interaction of the encapsulated
Philosopher and Chopstick classes:

p5

p1

p2 p3

p4

c5

c1

c2

c3

c4

Fig. 1: Model layout of the Table class

The behaviour of the Philosopher and the Chop-
stick classes is defined by using state charts. Depend-
ing on the tasks (see below) the state charts differ
slightly.

Experiments: The most interesting part of the
Dining Philosopher problem is the occurrence and fur-
ther avoidance of deadlocks. Therefore different
strategies were used for seizing the chopstick:

1. First left then right chopstick
2. Asymmetry: One philosopher takes first right and

then left chopstick
3. Monitoring the number of philosopher waiting for

the right chopstick. If four philosophers are al-
ready waiting, the fifth philosopher can not seize
the left chopstick

Remarks on implementation: Only the first (classi-
cal) strategy can cause a deadlock. AnyLogic handles
simultaneous events by randomly choosing one of the
scheduled events.

To get comparable results, a duration of 1.000.000
virtual time steps where taken for all experiments and
the same distributions (thinking time: discrete uniform
distribution [1,4], eating time: discrete uniform distribu-
tion [1,3]) where used for all strategies. The observa-
tion variables are number of deadlocks and number of
time steps till a deadlock (for strategy a), mean think-
ing time, mean waiting time and mean eating time for
one philosopher.

Results
Strategy a: This strategy is designed to generate

deadlocks. AnyLogic has automatic deadlock detec-
tion. When a deadlock occurs, a new replication of the
simulation will be started till the end of overall simula-
tion time is reached. Figure 2 shows the distribution of
performed simulation time per simulation run.

Fig. 2: Time steps per simulation run

Min: 11523.0

Max: 318134.0

Mean: 89124.21428571429

Variance: 9.450074562950548E9

Strategies b and c: Both strategies avoid dead-
lock situations. But as we see in the table below, the
strategy operating with one asymmetric philosopher is
more efficient (meaning, that the waiting time = starv-
ing time is the lowest - even more efficient than Strat-
egy a.

 a) b) c)

thinking time 304684,49 413726,10 55579,58

waiting time 451490,62 255194,20 799993,12

eating time 243824,89 331081,78 35567,89

Table 1: Mean time values for one philosopher

C4 Classification: Object-oriented Process
 Approach

Simulator: AnyLogic 4.5

