
+++ C4 − Object-or iented solut ion with AnyLogic +++

31

SN
E 1

8
/1

, A
p
ril 2

0
0
8

An Object-oriented Solution to ARGESIM Benchmark C4
‘Dining Philosophers Problem’ implemented with AnyLogic

Michael Gyimesi, Andreas Dielacher, Thomas Handl, Christian Widtmann,

Vienna University of Technology, Austria, mgyimesi@osiris.tuwien.ac.at

imulator: AnyLogic is a JAVA based general
purpose simulator supporting System Dynamics,

agent based and discrete event modelling approaches
under the object-oriented model design paradigm.
Users may apply the concepts of objects, interfaces,
hierarchy, message passing and more to generate their
own modelling constructs.

AnyLogic supports a large number of pre-defined
probability distributions for stochastic modelling and
can be used to design deterministic models as well.
Analyses of output data can be performed and visual-
ized directly within the simulator. AnyLogic enables
the user to generate interactive 2D and 3D animations
of the simulation as well as portable web-enabled
models for use as web applets. The model described
in this article was created in AnyLogic Version 5.5.

odel: This comparison C4 describes the prob-
lem of five philosophers competing for five

chopsticks on a shared table. The used model is just
as classical, since it features the philosophers, the
chopsticks and the table modelled in one object class,
respectively.

The table is the top object, instancing the five phi-
losophers and the five chopsticks. In this object ori-
ented approach, each philosopher is connected to
each of the two adjacent chopsticks by one message
queue. The normal procedure is requesting at first the
left and then the right chopstick, which in return are
granted to the philosopher by an according message.
The philosopher’s two requests for the chopsticks are
sent with a relative delay (pause). The duration of the
activities thinking, pause and eating is distributed
uniformly across a certain range of values. The phi-

losophers competing for an insufficient number of
chopsticks can be seen as a metaphor on an arbitrary
distributed system whose components compete for
limited shared resources.

So far the model resembles the example included
with AnyLogic. An expansion was made, building a
hybrid model since the philosophers maintain a cer-
tain level of “saturation”, which increases or decrea-
ses according to a simple differential equation while
the philosophers are eating or not eating. We dis-
carded this hybrid approach in favor of a purely dis-
crete model by replacing the continuous “saturation”
function of the example model by a discrete “calo-
ries” function, described in the context of task b.

In the original model, philosophers can reach a dead-
lock situation when for example all philosophers
simultaneously request their respective left chopstick,
causing them to wait forever for their respective right
chopstick.

-Task: A deadlock occurs when all five phi-
losophers, having requested and received the

left chopstick, simultaneously enter the pause state
with no right chopstick available. Thus a timeout has
been introduced, indicated by the edge leading from
waitingRight back to thinking, after which a philoso-
pher returns the left chopstick and thereby avoids a
deadlock for the whole system. The parameter max-
Pause which influences the time between the left and
the right request has a significant impact on the like-
lihood of a deadlock because it controls the amount
of time available for the adjacent philosopher to seize
the right chopstick.

Various simulation runs under variation of maxPause,
left and right timeout illustrated that a high maximum
pause has a crucial impact on the blocking of one
chopstick and that the consecutive high waiting times
result in easy starvation. This can be alleviated by
using high timeout values particularly while in wait-
ingRight, since this value has a direct impact on the
time that the left chopstick is seized without actually
being used. The timeout value for waiting for the left
chopstick directly affects the probability that an
available chopstick is going to be seized. The sum of

S

M

Figure 1: Top-Level Model

A

+++ C4 − Object-or iented solut ion with AnyLogic +++

SN
E

1
8
/1

,
A

p
ri

l
2
0
0
8

32

both timeouts and maxPause affects the fraction of
time that is available for actually doing work. Gener-
ally speaking, high timeout values favor quick and
efficient use of chopsticks, keeping in mind that this
is lost for doing actual work. After adding timeouts,
maxPause is only relevant for the number of calories
consumed while inactively waiting to seize the right
chopstick.

The results in figure 2 and 3 reflect the caloric distri-
bution for symmetric timeouts of 10 for waiting for
both chopsticks as well as for asymmetric timeouts of
2 for the left and 50 for the right chopstick, with 200
calories and the value of 20 for all max values. It can
be clearly seen that the asymmetric variant shows
better caloric characteristics.

-Task: Figure 4 depicts a philosopher’s state
machine incorporating all elements for model-

ling task a and b.

A philosopher always leaves the eating state with the
full number of calories while in the original approach,
he didn’t necessarily have to eat until full saturation.
This adaptation resembles that once the critical sec-
tion is reached, a component will only leave the sec-
tion again when it has fulfilled its task whose dead-
line will then be fully restarted. The duration of re-
maining in the eating state is still randomly distrib-
uted, since the duration of the critical section may not
be constant but e.g. data dependent. The notion of
calories thus resembles the timeout that each compo-

nent (or philosopher) is
able to wait until he is
required to enter the
critical section. When
calories reaches zero (i.e.
the component misses its
deadline for the critical
section), the philosopher
enters the state dead and
is no longer participating
in the dinner i.e. the
system, indicating a
potential system failure.

Thus care has to be taken to initialize a philosopher
with a reasonable number of calories with regard to
the maximum thinking, pause and eating periods. In
our experiments, initial 200 calories turned out to be
adequate for maximum thinking and eating periods of
20 time units each, with varying maximum pause and
timeout values. Despite being a discrete variable, the
used version of AnyLogic did only accept equations
being attributed to a state rather than program
statements. Thus the discrete decrease of calories had
to be modelled as a first order derivate with a con-
stant value of -1.

-Task: An important aspect of a distributed
system is the amount of time that it can spend on

its actual task. Thus the timeout value used for the
edge from waitingLeft to thinking is significant for
this ratio. When the timeout is too long, much time is
wasted waiting for a chopstick. If it is unreasonably
short, the philosopher will quickly enter the state
thinking again, spend the next period working and
thus risk running out of calories.

esumé: The modeling approach used in this
solution is an object-oriented process approach.

AnyLogic provides a powerful environment with
different well suited possibilities for building models
of distributed parallel systems and performing ex-
periments with different settings.

Corresponding author: Michael Gyimesi,
Department of Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
mgyimesi@osiris.tuwien.ac.at

Received: June 28, 2007
Revised: February 10, 2008
Accepted: February 20, 2008

Figure 2: Results for symmetric timeouts for waitingLeft
and waitingRight

B

Figure 4: Philosophical
behaviour

C

R

Figure 3: Results for asymmetric timeouts for waitingLeft
and waitingRight

