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Abstract. This paper investigates the identification and
control of unstable, under-actuated systems with non-
linear dynamic behaviour. Due to their instability and
non-linear responses to conventional control techniques,
these systems pose a particular challenge for precise
modelling and effective control. To address these prob-
lems, we developed a methodical, model-based ap-
proach using rapid control prototyping (RCP), which is
based on physical models and integrates model-in-the-
loop (MiL), software-in-the-loop (SiL) and hardware-in-
the-loop (HiL) testing. The methodological framework in-
cludes the identification of system dynamics using mea-
surement data-based approaches and the verification of
the models to ensure their accuracy. By applying these
models to the specific example of the S-Mobile, a highly
dynamic intralogistics system with a spherical electric
drive, we demonstrate the effectiveness of the approach.
The results show improved model accuracy and robust
control of the system, emphasising its potential applica-
bility in similarly complex technical systems.

Introduction and Problem
Definition
The modelling and control of intelligent dynamic sys-

tems is a fundamental aspect of modern engineering.

This task becomes particularly challenging when deal-

ing with unstable, under-actuated systems with non-

linear behaviour [1]. Such systems can be found in a

variety of applications, from robotics to energy trans-

mission systems, and require precise and reliable mod-

els for effective system design. In modern control en-

gineering, the models used are of crucial importance.

They are not only used for system design, but are an

integral part of the controller functions. Lack of accu-

racy in modelling can lead to sub-optimal performance

and even system failure. Therefore, the identification of

system dynamics, especially in non-linear and under-

actuated systems, is a key challenge. These systems are

characterised by their tendency to respond to conven-

tional control methods with unpredictable or unstable

behaviour.
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Function carrier S-Mobile as an exemplary
non-linear, unstable system.

Figure 1 shows such a system, the S-Mobile func-

tion carrier, which is designed as a highly dynamic in-

tralogistics system with a spherical electric drive. It

consists of a structure that is balanced on a sphere

via rotationally symmetrical actuators using omnidirec-

tional wheels. The primary problem is the identification

and validation of the control plant model as an integral

part of the control concept (see [2]). The requirements

for modelling quality are correspondingly high.
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This paper presents the concept of a new method-

ology for the identification of unstable, underactuated

systems taking into account there non-linear systems

dynamic.

It is structured as follows. Section 1 introduces

the methodology used for model-based development of

mechatronic systems and the general model-based iden-

tification process.

Section 2 gives an overview over the state-of-the-art

for identification of either non-linear or unstable sys-

tems. Subsequently, in section 3, the conception and

design of the new method and in section 5, the results

of the testing approach are laid out in detail. The paper

closes in section 6 with a conclusion and an outlook for

future work.

1 Methodology

A methodical, model-based approach is essential for the

development of complex cyber-physical systems. Fig-

ure 2 illustrates the general data-based identification

process used for this purpose, according to [3].
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Holistic, end-to-end, verification-orientated rapid

control prototyping (RCP) has established itself as the

defacto method in this area.

The core is a white-box model of the system to

be controlled based on physical approaches as well

as the processes model-in-the-loop (MiL), software-

in-the-loop (SiL) and hardware-in-the-loop (HiL). The

correctness of the model used is therefore an essential

prerequisite for efficient development and valid design

results. Model identification and verification are there-

fore core elements of the modelling process [4].

Based on the task, the requirements and the a-

priori knowledge of the system, the measurement is first

planned and the parameters of the theoretical model are

initially estimated. The difference between the mea-

surement and simulation results ε is used as input for

an optimisation function to calculate the parameters.

During model verification, an assessment is made as to

whether the real behaviour is reproduced with sufficient

accuracy. If this is the case, the final model is estab-

lished. Otherwise, the theoretical model is adapted, for

example by increasing the modelling depth.

2 State-of-the Art

Identification in control engineering refers to the exper-

imental determination of the time behaviour of a pro-

cess or system by analysing measured signals. The aim

is to map the system behaviour as accurately as pos-

sible within a defined class of mathematical models,

whereby the errors between the real process or system

and its mathematical models should be minimised. The

challenge is to keep the error between the actual system

behaviour and its mathematical model as small as pos-

sible. Researchers and engineers use measured input

and output signals to characterise and model the system

dynamics. This process is crucial for the development

of precise and efficient control systems, especially in

technical fields such as robotics, aerospace and indus-

trial automation, where accurate models are essential

for optimal performance [5].

2.1 Classification of identification methods

Identification methods for dynamic systems can be

fundamentally divided into two categories according

to their basis of analysis: Time domain methods and

frequency domain methods [6]. Time domain methods

use time series data to characterise the dynamic be-

haviour of the system. These methods are particularly

useful for modelling non-linear relationships between

input and output signals [5].
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In contrast, frequency domain methods analyse the

system behaviour by examining the response of the sys-

tem to sinusoidal input signals of different frequen-

cies. These methods are effective in determining the

system characteristics by analysing the frequency re-

sponse. Frequency domain methods are particularly

suitable for identifying linear systems as they provide

a clear and descriptive representation of the system dy-

namics in the frequency spectrum [7].

In addition, there is a third category, the so-called

mixed methods, which combine elements of both ap-

proaches in order to utilise the advantages of time and

frequency domain analyses. These hybrid approaches

are often able to provide a more comprehensive analy-

sis by capturing both the direct time response and the

frequency-dependent properties of the system [1].

The methods mentioned in the discussion above as-

sume that the input/output behaviour of a system is

measured directly. However, this approach is not prac-

tical for unstable systems. In such cases, the use of ad-

vanced techniques such as Closed Loop Identification

is required [8]. When investigating under-actuated sys-

tems, it is also crucial to ensure that all system states

are fully excited and analysed.

2.2 Approaches for the identification of
non-linear, unstable systems

Current research in the field of system identification

provides a wide range of perspectives on the challenges

and methods for analysing dynamic systems, especially

with the use of artificial intelligence and machine learn-

ing [8]. A common approach is to close the control loop

to stabilise the system. A distinction is made here be-

tween direct (evaluation of the system input and output)

and indirect (evaluation of the reference variable and

the system output) identification methods. These meth-

ods make it possible both to create consistent models

and to deal with non-modelled dynamics (approximate

modelling) [9]. Xavier et al. [10] provide an in-depth

overview.

In the specific application to underactuated systems,

Chawla and Singla [11] apply adaptive neural-based

fuzzy inference systems (ANFIS). Here, the model of

an inverse pendulum is generated from input/output

data of the dynamic system response. The accuracy of

the ANFIS model is confirmed both by the mean square

error and by experimental comparisons with real system

models. However, this is a non-physics-based model,

which is not suitable for treatment with typical control

engineering methods.

Through Chen et al. [12] introduced dual input-

output parameterisation (dual IOP), a new method for

identifying linear time-invariant systems using closed-

loop measurement data. The method represents an ex-

tension of previous approaches to closed-loop identifi-

cation and simplifies the design of the stabilising con-

troller in particular. The applicability for non-linear

systems is not discussed.

Finally, González et al. [13] deal with the identifi-

cation of unstable, continuous systems using refined in-

strumental variable methods, especially in closed-loop

control. It is shown that existing approaches such as

the Simplified Refined Instrumental Variable Method

(SRIVC) in their conventional form are not reliable

when it comes to modelling unstable systems.

As a solution, an adaptation of these methods is pro-

posed, which includes the introduction of a specially

adapted all-pass filter in the pre-filtering step. These

modified methods allow the identification of unstable

systems and minimise the error at convergence. How-

ever, the presented method is only intended to be ap-

plied to linear systems.

3 Designing the New Method

In order to be able to run through the established model-

based design process and, in particular, to parameterise

and use model-integrating control methods, an in-depth

physical analysis of the system states and parameters is

required. To do this, it is necessary to set up a physical

model with fully defined parameters of the controlled

system [14].

For this purpose, a modelling method based on bal-

ance equations taking into account conservation laws is

to be favoured. According to Noether’s theorem, every

continuous symmetry of the effect results in a conser-

vation law, and conversely, every conservation law has

a continuous symmetry of the effect. This means that

the underlying physics is fundamentally captured in the

model and not obscured by approximation. This results

in non-linear models with parameters that can be de-

rived entirely from physics.

However, as mentioned at the beginning, the iden-

tification of these is non-trivial due to the non-linearity

and possibly time variance. The method described be-

low, which can in principle be carried out for any type

of system in any domain, sequentially describes the tar-

geted identification of system parameters using a me-

chanical system.
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3.1 General model description

Based on the kinematics and dynamics of the respec-

tive mechanical system to be identified, the dynamics

functions must first be derived in the form of coupled,

non-linear differential equations. The following equa-

tion shows the generalised dynamics model [2] derived

from this:

M
(
q
) · q̈+C

(
q, q̇

) · q̇+G
(
q
)
= F

(
q
) ·u (1)

The symmetric mass matrix M ∈ R
m×m depends on the

individual masses of the systems’ rigid bodies and the

generalised coordinates q ∈ R
m. The vector C ∈ R

m×m

describes the generalised gyroscopic forces consisting

of the centrifugal and Coriolis forces. The vector G ∈
R

m describes the potential energy via gravity. The ma-

nipulated variables entered are calculated with the time-

varying vector u ∈ R
n. Its multiplication with the func-

tional matrix F ∈ R
m×n leads to the torque matrix.

3.2 Linearisation of the model

Characteristics of the system dynamics from equation

(1) can be analysed particularly well in the frequency

range. To do this, a linear model is first required at dif-

ferent operating points. For example, a Taylor series

expansion using Jacobian matrices can be used at dif-

ferent time steps i. The linearised model at the current

operating point is corresponding:

Δq̈ = (−J
q̈
(i)−1 · J

q
(i)) ·Δq+(−J

q̈
(i)−1 · J

q̇
(i)) ·Δq̇︸ ︷︷ ︸

for Ai·x

+(−J
q̈
(i)−1 · J

u
(i)) ·Δu︸ ︷︷ ︸

for Bi·u

+(−J
q̈
(i)−1) · f

∣∣∣∣
APi︸ ︷︷ ︸

for Ei·zi

The result is a linear state space model according to the

following equation (2).

ẋ = Ai · x+Bi ·u+Ei · zi

y =C · x+D ·u (2)

3.3 Stabilisation of the system

Based on the state space representation valid for the op-

erating point, the system should now be stabilised by at

least a narrow validity range around the operating point

i using state feedback.

A feedback gain K, which forms the control vector u

via the simple control law uT =−(
KT · x)T

=−xT ·KT

through the state feedback, results from various ap-

proaches to state control and does not have to be opti-

mally designed but must be known and constant. The

system gain is normalised and the control vector is

transformed using a set-point-filter N. This results in

the control law of the controller:

u =−Ki · x+N
i
·w (3)

From the point of view of the setpoint input w,

the closed control loop now reacts like a stable multi-

variable system within the physical limits defined

mainly by manipulated variable limits. The system lim-

its must be checked in the same way as the BIBO sta-

bility.

This is given by a consideration of the controllabil-

ity; if
(
A,B

)
is completely controllable, the inherent dy-

namics can be set arbitrarily, ergo the system can also

be stabilised.

3.4 Transfer-function and decoupling of the
system

The system, which has now been stabilised by control,

is to be decoupled for identification in the coordinate

system of the rigid body (BCS) to be investigated and

the independent transfer paths are to be represented as

transfer-functions.

This provides access to the main diagonal of the

transfer matrix of the overall system via the transfer

functions ϑx
ϑx_set

,
ϑy

ϑy_set
, ϑz

ϑz_set
in the respective spatial di-

rections (either rotatory or translatory).

The linear equivalent state space of the system has

the manipulated variables τ1,τ2,τ3 of the actuators as

input vector u(t), since the effect of the manipulated

variables in the system model is already taken into ac-

count in relation to the BCS.

The transfer-matrix G
S
(s) of the system can be ob-

tained from the state space representation by transform-

ing it into the Laplace-domain.

G
S
(s) =

X(s)
U(s)

=
(
s · I−A

)−1 ·B (4)

This system can now be divided into the system-

representation in the BCS spatial direction G
S_R

and a

transformation of the manipulated variables using the

transformation matrix T .
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In the same way, the closed control loop can be

utilised by applying the control law u = −K · x+N ·w
onto the state space representation.

ẋ(t) = A · x(t)+B ·
(
−K · x(t)+N ·w(t)

)
� �

X(s) · (s · I−A+B ·K)
= B ·N ·W (s)

(5)

The Transfer matrix of the closed control loop in the

reference case thus becomes:

G
W
(s) =

X(s)
W (s)

=
(
s · I−A+B ·K)−1 ·B ·N (6)

The state controller and the set-point-filter also con-

sist of a component KR and N
R

acting in the spatial di-

rections and the transformation of the manipulated vari-

ables to the actuator positions by the inverse transfor-

mation matrix T−1.

In the Laplace-domain, this can be expressed by the

transfer-matrices K(s) and N(s) or KR(s) = T ·K(s) and

N
R
(s) = T ·N(s) of the controller and set-point-filter.

The controlled system can be reshaped for observation

in the spatial directions [15].

3.5 Identification of the system dynamics in
the frequency domain

Since the system behaviour has so far only been derived

theoretically from physical modelling, the transmission

behaviour of the system is now to be identified by fre-

quency response measurements on the real plant. Be-

cause the system to be identified is unstable, the ref-

erence transfer function of the system stabilised by a

linear controller is first identified and the transfer be-

haviour of the uncontrolled system is calculated from

this. As the calculation of a frequency response is only

applicable to linear systems, the model linearised at a

suitable operating point is used for identification.

This model should be adapted to the measured fre-

quency response by varying the parameters. Only as

few free parameters as possible should be used. The

transfer behaviour of the controller and set-point-filter

is known and results from the control parameters used

in the measurement. The transfer function of the actu-

ator should first be identified separately by a frequency

response measurement so that it can be assumed to be

known when identifying the reference transfer function.

The actuator-transfer-matrix then corresponds to

the control-transfer-matrix of the manipulated-variable-

control in the BCS (X- Y- and Z-direction):

G
M_R

(s) = T ·
⎡
⎣Gm1(s) 0 0

0 Gm2(s) 0

0 0 Gm3(s)

⎤
⎦ ·T−1 (7)

This leads to a further possibility of representing the

transfer-matrix in the referencing-case with the sepa-

rated transfer-functions in relation to the BCS:

G
W
(s) =

(
I+G

S_R
(s) ·G

M_R
(s) ·KR(s)

)−1 · . . . (8)

·G
S_R

(s) ·G
M
(s) ·N

R
(s)

This yields to the correspondig matrix form:

G
W
(s) =

[
G

WRot
(s) G

WTrans�→Rot
(s)

G
WRot �→Trans

(s) G
WTrans

(s)

]
(9)

Here, the separated transfer matrices for the reference

case describe the couplings of the rotational and trans-

lational degrees of freedom in the BCS, e.g. explicitly

for the rotational degrees of freedom:

G
WRot

(s) =

⎡
⎢⎢⎣

Θx(s)
Θxsoll

(s)
Θx(s)

Θysoll
(s)

Θx(s)
Θzsoll

(s)
Θy(s)

Θxsoll
(s)

Θy(s)
Θysoll

(s)
Θy(s)

Θzsoll
(s)

Θz(s)
Θxsoll

(s)
Θz(s)

Θysoll
(s)

Θz(s)
Θzsoll

(s)

⎤
⎥⎥⎦ (10)

If the two reference transfer matrices are equalised,

the transfer matrix of the uncontrolled system can be

deduced by identifying them and subtracting the known

transfer matrices of the state controller and any pre-

filter as well as the previously measured and trans-

formed transfer matrix of the actuator. By equating the

eq. (6) with eq. (7), it is also possible to draw conclu-

sions about the dynamics-matrix defined at the operat-

ing point and the input-matrix of the state space and to

identify individual, unknown parameters of the system

within the coefficients formed by the system parame-

ters.

3.6 Pseudo-linear identification of the
stabilised system plant

Since the uncontrolled and thus also the controlled sys-

tem is non-linear, the amplitude of the excitation has

an influence on the system behaviour, as these do not

fundamentally fulfil the amplification and superposition

principle [16].

SNE 35(3) – 9/2025



154

Göllner et al. Identification of Systems with Non-linear Dynamic Behaviour

Frequency response measurements are therefore

carried out with different excitation amplitudes in order

to investigate this influence.

Typical non-linearities of mechanical systems are

e.g. friction in the form of Coulumb or Stribeck friction,

force transmission breakdown, dependencies of system

states e.g. on the gravity vector/velocity vector and vari-

able coefficients [15]. Since these effects within the fre-

quency spectrum are dependent on both the excitation

amplitude and the excitation frequency, the measure-

ment must be carried out in partial frequency bands and

then combined into one measurement using the evalua-

tion of coherence.

Basically, the structure of the physical model is

used to simulate an expected frequency response us-

ing known parameters. The simulated curve of the

amplitude and phase response (Amod (ω)dB,ϕmod (ω))
is compared with the curve of the measurement graph

(Ameas (ω)dB,ϕmeas (ω)). The difference between sim-

ulation and measurement is represented as the Root

Mean Square Error ε of both the amplitude difference

ΔA(ω)dB = Ameas (ω)dB−Amod (ω)dB and phase differ-

ence Δϕ(ω) = ϕmeas (ω)−ϕmod (ω) points and is cal-

culated using the coherence-dependent weighting factor

keval .

ε = εmag + εphase

εmag =
1

n

(
ωmax

∑
ω=ωmin

(ΔA(ω)dB)
2 · keval(ω)

)

εphase =
1

n

(
ωmax

∑
ω=ωmin

(20 · log(1+ |Δϕ(ω)|))2 · keval(ω)

)

The actual identification of the unknown model param-

eters is carried out by optimising this error surface ini-

tialised via estimates, using a modified downhill sim-

plex algorithm according to Nelder and Mead [5].

4 Used Test Bench
Infrastructure

To validate the concept described, the test bench shown

in Figure 3 was set up in which the S-Mobile function

carrier introduced in section can be tested under safe

and reproducible conditions.

In this test rig, the S-Mobile is restrained in a re-

configurable commissioning frame, which allows either

blocking or limiting the degrees of freedom of the su-

perstructure without inhibiting the degrees of freedom

of the ball.

The test carrier is fixed by wire ropes of a defined

length in such a way that a tilting movement up to a

maximum angle is permitted. This allows the structure

to be stabilised by a translational movement of the geo-

metric centre of the sphere while at the same time pre-

venting it from tilting.

Netgear PoE- Switch

Ethernet 2 Ethernet 1

BNC

Abacus 901 Signal Analyser

roll tray

S-Mobile

support frame

CAN 1

Power conditioning

CAN 1

reconfigurable commissioning frame

Measure-PC + CAN-adapter

dSPACE Embedded SPU +
dSPACE MicroAutoBox II

CAN 2

CAN 3

CAN 4

S-Mobile in test bench setup for identification.

The information technology linking of the measur-

ing and control devices required for identification is

also shown. The MicroAutoBox II as the RCP system

of the S-Mobile is used to execute the linear stabilisa-

tion controller required for identification. The DP Aba-

cus 901 signal analyser is coupled exclusively with this

in order to specify the target variables for the stabili-

sation controller and to be able to calculate the delay

time of the calculation duration of the control algorithm

synchronously on all measurement channels.

Accordingly, all measurement signals required for

identification are routed via the MicroAutoBox II. The

signal measurement is not only carried out directly, but

also by measurement data fusion algorithms that are

mainly executed on the internally coupled embedded

SPU. The actuators and sensors of the function carrier

are connected via a real-time CAN network. Experi-

ment preparation, remote ECU control and data record-

ing are carried out on a measurement PC that communi-

cates with both the MicroAutoBox II and the DP Aba-

cus 901 via an Ethernet network.
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5 Exemplary Application of the
Method on the S-Mobile

Using the test bench presented in the previous chap-

ter, frequency-dependent analyses were carried out on

the S-Mobile function carrier. For this purpose, target

states in the form of periodic excitations were given to

the stabilisation controller as reference variables. The

response of the closed control loop, consisting of the

controller and system as well as the actuator and sen-

sors, was then analysed.

The periodic excitations were selected on a system-

specific basis in order to take specific non-linearities

into account. For example, the amplitude of the exci-

tation has an influence on the system behaviour. Fre-

quency response measurements are therefore carried

out with different excitation amplitudes in a fixed fre-

quency range in order to investigate this influence. For

excitation, amplitudes from ϑ̂x−set = 1.5◦ to ϑ̂x−set =
5◦ are fed in as chirp signals.

Figure 4 shows the recorded response spectra as a

frequency response in the Bode diagram.
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1

Measured frequency responses at different
amplitude excitations, filtered by coherence.

Measurement series with a coherence of at least 0.7

across the entire spectrum have already been selected

here. It can be seen that the coherence of the mea-

surement starts to deteriorate significantly from approx.

20Hz. This is due to the data transmission via CAN

bus system from the RCP system to the actuators as

well as from the sensors. The actual body angles were

measured by an inertial measuring unit and transmit-

ted via CAN with a cycle time of 10 ms. This corre-

sponds to a sampling frequency of 100Hz, whereby the

Nyquist–Shannon sampling theorem [17] theoretically

results in a maximum sampling frequency of 50Hz. In

practice, however, the reconstructed signal is already

distorted at lower frequencies, which results in a lower

coherence of the signals. At higher amplitudes, the fre-

quency response could only be determined for low fre-

quencies, as excitation with a high frequency and high

amplitude causes the wheels to slip due to the limited

power distribution, thereby damaging the surface of the

sphere.

The amplitude responses for large excitation ampli-

tudes are close together, while the system for small ex-

citations at low frequencies (< 10Hz) has a low gain

and also poorer coherence. This is due to the large in-

fluence of static friction in the system at such low ex-

citation amplitudes. The phase response, on the other

hand, shows fewer deviations for all measurements.

The optimum parameters are identified by minimis-

ing the quadratic error between an assumed transfer-

element as the reference-transfer-function of the sep-

arated transfer path within the transfer-matrix and the

measured frequency response. Since both the transfer-

function of the actuator and the transfer-functions of the

controller (and set-point-filter) are known, the calcu-

lated reference model can be used to identify the struc-

ture of the transfer-element. This can also be estimated

by observing the measured amplitude- and phase-drop.

To identify the parameters, the system transfer func-

tion Gsx(s) =
θx(s)
Mx(s)

must first be obtained by linearis-

ing the non-linear model with the mass moment of in-

ertia as a free parameter. The model is to be linearised

at the quasi-stable point (ϑx = 0,ϑy = 0), as the sys-

tem oscillates around this point during the frequency

response measurement. However, the angular velocity

is not assumed to be ϑ̇x = 0 for the linearisation, but

should correspond to the actual angular velocity during

the measurement. However, this is not constant during

the measurement, but depends on the frequency and am-

plitude of the oscillation. With a harmonic input oscil-

lation ϑx(t) as the excitation signal, the angular velocity

results from the following equation:

ϑx(t) = A(ω) · ϑ̂x−set · sin(ω · t +ϕ(ω))

ϑ̇x(t) =
dϑx(t)

dt
= A(ω) · ϑ̂x−set ·ω · cos(ω · t +ϕ(ω))
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For the zero crossing at the quasi-stable point around

which the system oscillates (ϑx(t) = 0), the maximum

angular velocity results:

ϑ̇x(ω) = A(ω) · ϑ̂x−set ·ω (11)

The following figure 5 shows the maximum angular

velocities associated with the measured frequency re-

sponse.

100 101
0

0.01

0.02

0.03

Angular velocity at zero crossing.

These are used for the linearisation of the reference

model in order to derive the transfer-matrix using the

method described in chapter 3. This in turn shows the

structure and the parameter dependency, which can now

be resolved according to an unknown parameter. By lin-

earising the non-linear model at the operating point un-

der consideration, for example, a system transfer func-

tion dependent on the moment of inertia θx can be de-

rived in order to identify this as a free parameter via

quadratic optimisation:

Gsx(s) =
ϑx(s)
τx(s)

= f (σ ,ω,θ) (12)

In combination with the known/identified actuator (-

system) and the transfer-functions of the controller, the

reference-transfer-function for the examined degree of

freedom can be formed. The transfer-function of the

state-feedback always results as a PDn-element, since

the state controller always feeds back all minimum co-

ordinates and at least their first derivative [18]. Further-

more, a dead time Tt is added to the transfer-element,

which results from the data communication process.

Gw(s) =
ϑx(s)

ϑx−set (s)
=

NRx ·Gsx(s) ·Gm(s)
1+Gsx(s) ·Gm(s) ·KRx(s)

· e−Tt ·s

The frequency response of the applied transfer element

with free initialised parameters is shown in green in the

following figure 6. Quadratic optimisation results in the

red curve after parameter adjustment. By minimising

the error of the amplitude- and phase-response in rela-
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Identified transfer element for the command case.

tion to the measurement, unknown values for the free

parameters of the example system were identified. A

comparison with the design data of the system confirms

the accuracy of the identified mass moment of inertia

θx = 20.31. This method can therefore be used to iden-

tify unknown parameters on under-actuated, unstable

and non-linear systems.

6 Conclusions and Future Work
This paper discussed the identification and control of

unstable, under-actuated systems with non-linear dy-

namic behaviour. The focus was on the development

and validation of a new methodological procedure for

system identification. Using the example of the S-

Mobile, an innovative intralogistics system, it was suc-

cessfully demonstrated how the system dynamics can

be precisely identified and the system stabilised by ap-

plying the new approach.

For future work, further investigation of the ap-

proach is recommended in order to cover an even wider

range of unstable, under-actuated systems. In particu-

lar, the integration of advanced machine learning meth-

ods and surrogate models [19] could further improve

the accuracy and increase the adaptivity of the control

systems. It would also be of great interest to investigate

the transferability of the developed methods to other in-

dustrial applications to test their universal applicability.
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