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Abstract.  Simulations – especially human-in-the-loop 
real-time simulations – are important in the air traffic con-
trol (ATC) domain to train controllers and to test new fea-
tures for controller working positions. One important rea-
son for such simulations is the measurement of human 
workload. Verbal communication of aviation operators – 
contributing to this workload – is a central mean for safety 
and efficiency of air traffic. Speech recognition and under-
standing (ASRU) has reached pre-industry level, is about 
to enter operations, and therefore will become a vital part 
in training. The technology affects working procedures 
and reduces controller workload by roughly 20%. Thus, 
ASRU must be considered in simulations.  
This paper describes a process model to integrate ASRU 
in ATC simulations. The model consists of three steps for 
efficient integration and adaption of ASRU: (1) collection 
of in-domain speech data for tuning of acoustic and lan-
guage models, (2) compilation of configuration files and 
adaptation of speech understanding algorithms, and (3) 
manual checking of automatic transcriptions and ex-
tracted, semantic meanings of speech utterances.  
We evaluate the process using a multiple remote tower 
environment case study. In this study, recognition error 
rates for words and callsigns were reduced by a factor of 
three compared to first simulations and command recog-
nition rates increased from 81% to 92%.  
Similarly feasible results are expected for other new ATC 
simulations with ASRU using the proposed process model. 

Introduction 

Simulating air traffic control (ATC) is crucial for training 
of air traffic controllers (ATCos) outside of their opera-
tional environment. They can train new or seldom exe-
cuted operational procedures and test new features for 
controller working positions before potential deploy-
ment. Radio telephony communication between ATCos 
and cockpit crews is in general a crucial part of these sim-
ulations [1].  

The transformation of operational, analogue voice 
signals into spoken words, intended meanings, and fur-
ther provision of the digitalized ATC commands for 
downstream applications has been subject to numerous 
research projects [2]. ASRU is evaluated ready for oper-
ational usage and as such is expected to become a stand-
ard feature for future training and system development. 
As ASRU impacts ATC procedures in a way that work-
load of ATCos is reduced by 20% (cf. [3]) it must become 
a standard feature of ATC simulators.  

 
Moreover, simulators will benefit from additional 

available data: Participating simulation staff such as su-
pervisors or simulation pilots can be supported by receiv-
ing given ATC commands in real-time, e.g., for assis-
tance, automation, data recording, and analysis.  

The major challenge to achieve these benefits is to 
meet the requirements of the dynamical changing simu-
lation environments including, e.g., airspace characteris-
tics. To cope with these circumstances, we propose an it-
erative integration approach into ATC simulators with 
continuous improvement of ASRU.  
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This approach contains three steps which are repeated 

multiple times to iteratively improve the steps’ quality: 

1. Acoustic modelling: Integrating new words/accents, 
2. Semantic modelling: Integrating new ATC  

concepts/commands, 
3. Verification: Evaluation of transcriptions and recog-

nized ATC concepts/commands. 

We demonstrate the feasibility of the approach using a 
case study in which a simulation environment with mul-
tiple remote tower control is enhanced by ASRU [4]. 

To achieve reasonable speech recognition and under-
standing rates, it is important to have a large set of audio 
recordings from the aviation domain, which can be used 
as training data. Earlier ASRU projects in ATC used 
around 30 hours of in-house training data [5], [6].  

However, the available open-access corpora are still 
limited in size compared to other domains as they are spe-
cially protected by telecommunication laws. In our con-
text the main issue is, however, that voice recordings for 
the new application do not exist at all as the simulation 
training is required before the operational introduction. 
Furthermore, the important ASRU step of extracting rel-
evant semantic ATC concepts from the transcribed word 
sequences, predominantly covered the ATC approach 
and en route environment with operational and simula-
tion audio recordings. The aerodrome environment in-
cluding tower, multiple remote tower, and apron has only 
been tackled to a lesser extent in simulated environments. 

To cope with these challenges, we further present two 
different tools with tested user interfaces to (i) record 
ATC speech data in a structured way and (ii) for auto-
matic transcription of aviation operator utterances. The 
collected data fed the training data pool of an ASRU 
module for a close-to-reality ATC multiple remote tower 
human-in-the-loop (HITL) simulation. 

This paper outlines related work in Section 1. Sec-
tion  2 presents the user interfaces and configuration files 
to support data recording, transcription, and annotation 
as required in the three repetitive steps of our process 
model. A transcription contains the word-by-word utter-
ance content, whereas we use the term annotation for 
speech understanding, i.e., performing semantic interpre-
tation of word sequences from the transcriptions. Sec-
tion 3 explains the human-in-the-loop simulation setup 
for a multiple remote tower simulation, the integration of 
ASRU, and results on the ASRU performance at different 
stages. This is followed by conclusions in Section 4. 

1 Related Work 

1.1 ATC Speech Recognition & Understanding 
Communication between ATCos and pilots with mutual 
understanding is a cornerstone of safe and efficient air 
traffic [7]. Speech recognition delivers the spoken word 
sequences of ATC utterances [8]. Instruction understand-
ing extracts the semantic meaning of such word se-
quences [9]. A combined ASRU module can enable 
downstream applications or help to assess communica-
tion quality parameters [10], e.g., in HITL-simulations or 
operational environments. 

Such an ASRU module for ATC communication fol-
lows a series of steps: 

• First, aircraft callsigns and ATC commands that 
will most likely appear in the next ATCo utterances 
are predicted based on contextual data such as  
surveillance data [11].  

• Second, a speech-to-text engine delivers the  
recognized sequences of words from analyzed  
ATC utterances [12].  

• Third, a text-to-ATC-concept component extracts 
the relevant callsigns and ATC commands from  
the recognized word sequences [13].  

These extracted ATC concepts follow a European-wide 
agreed ontology for semantic annotation of ATC utter-
ances [14]. The performance of the speech-to-text step is 
measured via word error rates, but more importantly the 
text-to-ATC-concept step is analyzed via recognition 
rates and error rates for the extracted ATC concepts [15]. 
The output of the ASRU module is then used to support 
ATCos within their workstation displays [4]. The possi-
bility to quickly add new features from ASRU module 
outputs into displays used in HITL-simulations helps to 
get swift feedback from human operators on the features’ 
feasibility [16].  

An early assessment has been done for the feasibility 
of ATC automation within a simulation environment 
[17]. Virtual simulation pilots using an ASRU module 
can support automating ATC simulations [18]. 

1.2 Simulators in the Aviation Domain 
Simulations are a central mean in ATC [19]. Simple ex-
periments such as effects of modified airspace [20] or 
landing clearances [21] can be evaluated without human 
operators.  
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However, there are many other ATC operation exper-

iments that require human involvement in situation as-
sessment, decisions, and communication. The analysis of 
such relationships usually requires a HITL-real-time sim-
ulation (RTS) [22]. This methodology is as well common 
for simulations with pilots [23]. HITL-RTS can be 
scripted with the help of, for example, ATC scenarios to 
include relevant air traffic situations in the different do-
mains tower, approach, and en route [24]. 

There exist some simulators at national air navigation 
service providers (ANSPs) or research institutes. There 
are even publicly available ATC simulators [25] and 
open source simulators based on open data [26]. ATC 
simulators represent very different fidelities regarding 
their realism and completeness [19]. They usually also 
focus on just one of the domains, i.e., approach/en route 
[27] or tower [28]. We focus on the tower environment 
also comprising remote and multiple remote towers [29]. 
While speech recognition is available for some simula-
tors to automate or support simulation pilots, speech un-
derstanding to enable operational support (e.g., flight 
strip handling) exists to a much lesser automation degree. 

1.3 Speech Recognition & Understanding 
and its Influence on Controller Workload 

The ATCo workload in a HITL-RTS with and without 
ASRU was objectively measured with the time needed 
for a secondary task [12].  

In the baseline condition, ATCos needed to maintain 
aircraft radar labels completely manual, i.e., enter the 
command content via mouse and drop-down menus.  

In the solution condition, ATCos were automatically 
supported by an ASRU system [12].  

After compensating sequence effects – depending on 
the first simulation run was baseline or solution – and 
eliminating outlier the average time to solve the second-
ary task was almost six minutes for the baseline condition 
(347 s), but less than five minutes for the solution condi-
tion (289 s).  

Hence, the ATCos needed 20% more time to perform 
a secondary task if they were not supported by automatic 
radar label maintenance with the ASRU output in their 
primary ATC task. Thus, ATC simulators without ASRU 
can cause workload measurement errors of up to 20% in 
the future compared to operational environments with 
ASRU. 

1.4 Creating Speech Recognition Models 
Thanks to Siri or Alexa speech recognition has now 
reached the general public. However, these engines are 
not usable for ATC applications due to insufficient recog-
nition performance and data privacy issues.  

Recently, some general engines, so called open 
source end-to-end models like, Whisper [30] or wav2vec 
[31] gained more and more attention like with an appli-
cation for ATC [32]. These end-to-end models often 
come with easier implementation and adaptation pro-
cesses. This enables also non-speech recognition experts 
to reach suitable performances in different target areas. 
These engines have seen already ten thousand of hours of 
normal English conversation.  

Nevertheless, some fine-tuning with, e.g., ten hours 
of airport dependent data is necessary for ATC applica-
tions. This fine-tuning has shown to reduce the word er-
ror rate (WER) from 90% to 5% for CoquiSTT [33]. The 
same was reported for DeepSpeech [34]. The STARFiSH 
[5] and HAAWAII project [6] used a basic engine, which 
has already seen a lot of ATC training data. This engine 
was fine-tuned with roughly 30 hours of domain depend-
ent data. The HAAWAII project started with just one 
hour of domain dependent data from the Icelandic air-
space. This one hour already reduced the WER from 50% 
to 33% while three further hours reduced it to 20%. This 
eases the effortful manual transcription task. The ATCO2 
project utilizes unsupervised learning on 5000 hours of 
ATC voice recordings together with context information 
from radar data [35].  

MITRE presents the FAA system DRAAS (DALR 
Remote Audio Access System), which, in principle, pro-
vides access to audio from 129 National Airspace facili-
ties. More than 200,000 hours of silence-reduced audio 
are recorded each month, i.e., 2-3 billion ATC transmis-
sions per year are recorded. This enables at least unsuper-
vised learning [36].  

Currently, end-to-end speech recognition models own 
the highest potential for the application in HITL-simula-
tions. On one hand they are already trained on a large da-
taset of formal English language. On the other hand, they 
can easily be adapted without specific speech recognition 
expertise. Nevertheless, ATC applications require fine-
tuning. 
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2 Simulation Setups and Tools 

2.1 Online ATC Speech Recorder 
For the adaptation of ASRU models within ATC applica-
tions such as acoustic model, language model, or com-
mand extraction model, training data is required to 
achieve an acceptable performance. Static or quasi-static 
data that frequently appear in ATC communication such 
as frequencies and airline names are quite easy to acquire 
as verbalized speech.  

However, depending on the ASRU use case, the dy-
namic data comprises speech of ATCos and pilots, sur-
veillance data, flight plans, meteorological data, ATC 
sector configurations, and many more. 

The best recording environment for speech (and sur-
veillance) data is the environment, in which the later 
ASRU-related ATC application is executed. Unfortu-
nately, the targeted environment is not available in all 
cases as for instance conversion training and validation 
projects aim on setups which are not established in real 
operations. Moreover, ATCos’ duty time is a rare re-
source [37] and should be used as little as possible for the 
preparation of the simulation setup. 

Hence, the minimum setup should be easy to use and 
accessible from remote to provide the required training 
data for future working procedures without the need for 
ATCos to travel or train in advance. These requirements 
can be fulfilled with a website that ATCos can login to. 
A server as backend could offer a simplified traffic sim-
ulation and speech recording option. 

One of the biggest challenges of a qualified data set 
given alternative data recording options is the feasibility 
for the later ASRU-related ATC application, i.e., the gen-
erated data content should be close to the data content 
expected in the final simulations. Hence, a good option 
would be a complete remote simulation, i.e., the ATCo 
manages interactive air traffic like at a normal controller 
working position with uttered ATC commands that are 
recorded. Again, a prioritization of requirements should 
be made in order to deliver a reasonable solution in a rea-
sonable amount of time. 

The simplest recording option consists of a sheet of 
paper with written ATC utterances that ATCos should 
read while being recorded on a headset. The recordings 
could help to learn acoustic models, e.g., the sound of 
ATC domain prosody. However, the language (sequence 
of words) would already be predefined and not realisti-
cally help to learn a language model, because ATCos 

more or less deviate from the International Civil Aviation 
Organization (ICAO) phraseology. This needs to be in-
cluded into the ASRU models. 

An enhanced setup version should give ATCos a 
greater level of freedom to formulate their own utterances 
just with some basic hints about the air traffic situation. 
The ATCos would see static figures with air traffic situ-
ations, the last utterances of the involved aircraft pilots, 
and some options on how to react in the current situation 
in a very basic style with ATC command type sugges-
tions. This forces the ATCos to actively think about the 
situation, to use predefined aircraft callsigns, runways, 
airport names, and waypoint names as used in final sim-
ulations, and produces a more natural speech comparable 
to a minimum simulation. Such recorded speech data 
would support to learn a language model, i.e., the words 
and word sequences that ATCo utterances operationally 
contain and a command extraction model, i.e., what the 
ATCos mean by their utilized phraseology. 

Figure 1 shows our implemented prototype of an 
online ATC speech recorder. As first step after login, the 
ATCos need to confirm their participation and data up-
load. One is then asked to walk through 20 different ATC 
scenarios. The online ATC speech recording environ-
ment offers static air traffic situations in a simple imple-
mentable map view as shown in Figure 1 and communi-
cation info that can be understood when going through 
the online tutorial with explanation boxes. 

 
Figure 1: Screenshot of the Online-ATC-Speech-Recorder 

with a map view (left) and the communication 
info (right) for a given situation at Vilnius airport 
with a voice recording. 
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The map view presents one involved airport with 

some aircraft information on the left side. The right side 
shows scenario information (see Figure 1, light blue with 
white font), last radio calls (see Figure 1, light grey; from 
Pilot 1 and Pilot 2), flight strips of both involved aircraft 
with reasonable commands in the given situation (see 
Figure 1, yellow and blue), and options for recording, la-
belling, and upload of audio files (see Figure 1, red).  

The corresponding ATCo voice utterance is recorded 
while pushing the “TALK”-button via the ATCo’s head-
set. This speech recording setup forms the second lowest 
simulator fidelity category ‘B’ with the used electronic 
equipment attributed to category ‘C’ of table 1 in [19]. 

Nine ATCos from the Lithuanian ANSP and five 
ATCos from the Austrian ANSP contributed to an online-
recording resulting in 667 audio files with one hour of net 
speech, i.e., each utterance lasts five seconds on average. 

2.2 Online ATC Speech Recognition 
The recording of audio files can as well be directly con-
nected to an online speech-to-text engine to immediately 
receive the transcripts of ATCo or pilot utterances in the 
desired format. The developed browser-based applica-
tion as shown in Figure 2 utilizes hypertext markup lan-
guage (HTML), cascading style sheets (CSS), and JavaS-
cript for the front-end as well as Python 3.8 and its Flask 
application programming interface (API) with the inte-
gration of DeepSpeech 0.9.3 for the back-end. The app 
has been tested within different browsers on Ubuntu 20 
and 22 as well as Windows 10 and 11 leveraging ffmpeg 
and sox for audio recording and conversion from opus-
files into 16 kHz wav-files. 

After pressing “A” on the keyboard for ATCo mode 
or “P” for pilot mode, the audio recording and live tran-
scription starts. After releasing the pressed key, the audio 
file is saved with the current timetick in its filename. This 
timetick is reused for the transcription file name. The 
speech-to-text engine DeepSpeech continuously deliv-
ered the transcription of recognized words even if the ut-
terance has not been completed yet, e.g., “false” in Figure 
2 indicates that the endpoint of the utterance has not been 
reached as the push-to-talk button is not released yet. 

The console version of the application is also able to 
use defined speech pauses as the endpoint for utterance 
recordings and their transcriptions. The audio filename, 
recognized words, and endpoint information are stored in 
a JavaScript object notation (JSON) file, which eases the 
readability by machines. as shown in the black bottom 
part of Figure 2.  

As DeepSpeech offers to integrate own speech recog-
nition models, the speech-to-text quality can be improved 
through utilizing sophisticated acoustic models and lan-
guage models trained on ATC data. The application setup 
forms the lowest simulator fidelity category ‘A’ with the 
used voice recognition capability attributed to category 
‘C’ of table 1 in [19]. 

 

 

Figure 2: Screenshot-Collage of the Online-ATC-Speech-
Recognition Interface with filename format,  
recognized word sequence, and endpoint  
information in graphical user interface (top)  
and JSON format (bottom). 

2.3 ASRU Simulation Configuration 
The ASRU module requires two important configuration 
inputs to be customized for a given ATC scenario. These 
inputs are set via configuration files in JSON format. The 
two files contain the ATC command types and the ATC 
concepts that shall or shall not be extracted for the given 
scenario. 

Figure 3 shows three example entries of a JSON file 
for supported ATC command types and their qualifiers 
nested in the Commands array.  

The Type key indicates the main part of the ATC 
command type while the SndTypeName indicates the sub 
part.  

This allows to define command types such as 
CLEARED LANDING, CLEARED ILS, TAXI TO, or VA-
CATE VIA. Some command types can have a Qualifier to 
specify the value such as LEFT or EXPEDITE for the 
command type VACATE.  

The key SupportedInThisAirspace marks if the com-
mand type should be considered for the current simula-
tion setup. This enables, e.g., to deactivate PUSHBACK 
commands for en route traffic scenarios (if false). 
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Figure 3: Configuration file excerpt example with  

supported ATC command types and qualifiers 
in JSON format. 

Figure 4 shows two example entries of a JSON file for 
ATC concepts with further relevant values nested in the 
AtcConcepts array. The Name defines how an entity of 
an ATC concept shall be referred to. The Locator, e.g., 
contains a four-letter ICAO code for an airport such as 
EYVI for Vilnius where the concept is relevant. 

 
 

 
Figure 4: Configuration file excerpt example with ATC  

concepts, their word sequences, and additional 
information in JSON format. 

The KeyWordSeq array lists all word sequences that 
should be mapped to the concrete ATC concept if they 
are found in an utterance transcription. The Com-
mandTypes array lists all types that could make use of the 
ATC concept, i.e., a runway could e.g., be used for 
CLEARED TAKEOFF or HOLD_SHORT. The Con-
ceptType represents the nature of the ATC concept. Ad-
ditionalInfo might contain numeral data about lati-
tude/longitude of a waypoint or a frequency depending 
on the ConceptType. 

 

With these two configuration files, it is possible to list 
the expected ATC commands and concepts. Hence, com-
mands with Mach numbers can be excluded for tower 
scenarios and only those waypoints are added to the con-
figuration file that exist in the current ATC environment. 
This enables to manually customize the command recog-
nition, i.e., adapting speech understanding to the applica-
tion without ASRU expert knowledge. 

3 Multiple Remote Tower ASRU 
Simulations and Results 

3.1 Real-Time Simulation with Controllers  
For the HITL-RTS described in this paper, ATCos were 
responsible for three airports at the same time (named 
Vilnius, Kaunas, Palanga). The ATCos had three rows of 
monitors presenting the camera image of the respective 
airports and a head-down ATC system unit to monitor 
and influence the given traffic (see Figure 5). The com-
munication with simulation pilots was done via radio te-
lephony (over IP) on three different frequencies. 

 

 
Figure 5: Multiple Remote Tower Setup in the Remote 

Tower Lab of DLR Braunschweig:  
One ATCo is controlling three airports,  
using head-down electronic flight strips  
and a tower radar display. 

The ASRU module (1) automatically transcribed all 
ATCo utterances word-by-word and (2) automatically 
annotated the word sequences with the semantic mean-
ings using a command extraction algorithm and the de-
fined ontology of European ATC stakeholders.  
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The relevant recognized ATC commands were (3) 

displayed in an abstracted form in an ATCo display to be 
confirmed/maintained. An example transcription follow-
ing defined transcription rules was: “airest cargo five five 
zero vilnius tower you are cleared to destination via erlos 
one delta departure squawk is two one seven four startup 
approved QNH one zero two one runway one three”. 

The relevant ATC commands with values were ex-
tracted from the transcription. The annotation of the 
above example transcription in a human-readable format, 
ignoring the JSON tagging, is: 

AEG550 STATION VILNIUS_TOWER 
AEG550 CLEARED TO DESTINATION 
AEG550 CLEARED VIA ERLOS_1D 
AEG550 STARTUP 
AEG550 INFORMATION QNH 1021 
AEG550 INFORMATION ACTIVE_RWY RW13. 
 

The relevant recognized callsign and ATC command val-
ues of each utterance were automatically shown to the 
ATCo on an electronic flight strip display. This means, 
the aircraft with the recognized callsign was highlighted 
and the content of the ATC commands was displayed as 
abbreviated information either in text form or as symbols 
(e.g., an aircraft engine icon for STARTUP). The ATCo 
only needed to check the highlighted commands and cor-
rect if needed in seldom cases. Hence, these automati-
cally entered and displayed information from verbal ATC 
commands reduced the manual ATCo workload for elec-
tronic flight strip maintenance.  

Our conducted HITL-RTS evaluates the benefit of an 
ASRU module to support tower ATCos with electronic 
flight strip maintenance in a multiple remote tower envi-
ronment. The setups for the HITL-RTS and pre-trials 
form the highest simulator fidelity category ‘E’ of table 
1 in [19]. Hence, they were very realistic, but costly in 
the RTS conduction. 

The verbal ATCo utterances of 116 roughly 45-
minutes long RTS runs have been analysed in order to 
compare the automatic ATC concept extraction results 
with the actually intended ATC concepts. Therefore, all 
RTS runs have been automatically transcribed word-by-
word and annotated concept-by-concept. Afterwards all 
of them were manually checked and corrected if neces-
sary.  

 
 

The HITL-RTS campaigns have been conducted at 
six different points in time with slightly varying setups 
between 2017 and 2022 with tower ATCos from four Eu-
ropean ANSPs as follows: 17 from the Lithuanian ANSP, 
13 from the Hungarian ANSP, 7 from the Austrian 
ANSP, and 3 from the Finnish ANSP. The complete data 
set is called “116/40” as it contains 116 simulation runs 
of 40 ATCos. It comprises 177,847 transcribed words 
with 32,436 commands in 10,712 audio files. 

The simulation setup for the Lithuanian (LIT, 52 sim-
ulation runs), Hungarian (HUN, 41 simulation runs), and 
Austrian (AUT, 16 simulation runs) ATCos differed only 
very slightly in airport names. The aircraft callsigns, air-
port layouts, configuration files, etc. remained the same. 
However, the simulation setup for the Finnish (FIN, 7 
simulation runs) ATCos included different callsigns, air-
port layouts, and configurations despite being a multiple 
remote tower (MRT) simulation with three remote air-
ports and comparable traffic amount and traffic mix, too. 

A subset of the complete data set, i.e., the final HITL-
RTS with Lithuanian and Austrian ATCos in winter 2022 
are analysed specifically. This data set contains ten sim-
ulation runs from Austrian ATCos and eight simulation 
runs from Lithuanian ATCos, in the latter eliminating 
two simulation runs of one ATCo due to technical issues, 
i.e., the sub-data set is called “18/9” due to 18 simulation 
runs of 9 ATCos. It comprises 35,022 transcribed words 
with 6963 commands in 2437 audio files. 

3.2 Iterative ASRU Simulation Results 
First, we present the results achieved with the ASRU 
model during and after the final simulation runs on the 
18/9 data set, respectively. Second, we detail the ASRU 
results given the same ASRU model for the 116/40 data 
set. Third, we show the improved results with our current 
ASRU model on the 116/40 data set.  

The following tables show the recognition rates 
(Recog) and error rates (Err) on callsign level (Csgn) and 
command level (Cmd) as well as the WER if applicable. 
The recognition and error rate results do not sum up to 
100% due to not shown rejection rate, i.e., correctly an-
notated commands were not recognized at all, e.g., a 
startup, pushback, and taxi clearance were given, but 
only startup and taxi were recognized. Then we have one 
rejection. If the pushback would be replaced by, e.g., a 
climb command or the pushback value would be recog-
nized wrongly, it as an error. 
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Table 1 shows the results for ASRU performance of 

three different speech recognition modes for the 18/9 data 
set. The mode Live shows the ASRU results on the con-
tinuous audio stream during the simulation runs as ‘per-
ceived’ by the ATCos with a Kaldi based speech-to-text 
engine that has seen the earlier available audio files – be-
fore 2022 – as training data. This training data encom-
passed 3.6h of LIT and 0.9h of AUT next to other ATC 
data sources that did not match the final MRT simulation 
setup with Lithuanian and Austrian ATCos. The mode 
AllTrain1 shows the WER for speech recognition on rec-
orded wav-files with a Coqui speech-to-text engine and a 
model that has been trained on all available audio files 
after the final simulation runs (roughly 17h). The com-
mand and callsign rates are then computed on the speech-
to-text output. The mode Perfect1 considers manual tran-
scriptions, assuming no errors. As expected, the WER is 
highest with least training data in Live mode. The more 
data, the better for ASRU performance. Therefore, the it-
erative approach is helpful to collect, and steadily faster 
transcribe and annotate more data for the next phase. 

Speech 
Recognition 
Mode 

Word 
Error 
Rate 

Cmd 
Recog 
Rate 

Cmd 
Err 
Rate 

Csgn 
Recog 
Rate 

Csgn 
Err 
Rate 

Live 10.7 80.7 7.0 94.1 2.2 

AllTrain1 3.2 92.0 4.2 98.4 0.7 

Perfect1 0.0 95.6 2.9 99.7 0.2 

Table 1: First results in [%] for speech recognition and 
understanding of HITL-RTS runs (18/9 data set). 

Table 2 presents the speech understanding metrics based 
on the AllTrain1 mode while Table 3 shows the results 
for the Perfect1 mode on the 116/40 data set.  

Data Set 
Cmd Recog 
Rate 

Cmd Err 
Rate 

Csgn Recog 
Rate 

Csgn Err 
Rate 

All 93.1 4.1 98.4 0.8 

MRT_HUN 93.8 4.3 98.3 1.0 

MRT_LIT 94.2 3.4 98.7 0.7 

MRT_AUT 90.6 5.1 97.5 0.9 

MRT_FIN 85.1 5.2 98.6 0.8 

Table 2: First results in [%] for ATC concept recognition on 
116/40 data set given a WER of 3.2%. 

Data Set 
Cmd Recog 
Rate 

Cmd Err 
Rate 

Csgn Recog 
Rate 

Csgn Err 
Rate 

All 96.0 2.7 99.4 0.4 

MRT_HUN 95.8 3.2 99.0 0.7 

MRT_LIT 97.3 1.7 99.8 0.1 

MRT_AUT 94.7 3.6 99.4 0.3 

MRT_FIN 90.0 3.7 99.4 0.2 

Table 3: First results in [%] for ATC concept recognition on 
116/40 data set given a WER of 0%. 

As expected, the higher WER in Table 2 leads to worse 
recognition rates and error rates on semantic level than in 
Table 3. However, with the WER of 3.2%, the callsign 
recognition only decreases by roughly 1% absolute and 
the command recognition decreases by 3% absolute only. 
This demonstrates that the speech understanding process 
can compensate a lot of word errors through the use of 
contextual data, due to redundant information in the ut-
terances, and due to word errors, that affect irrelevant 
portions of a sentence in some cases. 

Now, we present the most recent results given the 
available complete data set for training in our latest iter-
ation of the process model. We created a first ASRU 
model PartTrain – this encompasses acoustic model, lan-
guage model, and command extraction model – with 
training based on speech data, correct transcriptions, and 
correct annotations of Vienna approach. This model was 
applied on a multiple remote tower data test set resulting 
in a WER of 77%, a command recognition rate of 1%, 
and a callsign recognition rate of 24% (see Table 4). 
These results are useless even if the ASRU model per-
forms acceptable when applying to Vienna approach data 
on which it has been trained with a WER of 6.2%, a com-
mand recognition rate of 85.6% (error rate 5.3%), and a 
callsign recognition rate of 96.9% (error rate 1.2%). 

Speech 
Recognition 
Mode 

Word 
Error 
Rate 

Cmd 
Recog 
Rate 

Cmd 
Err 
Rate 

Csgn 
Recog 
Rate 

Csgn 
Err 
Rate 

PartTrain 77.0 1.3 8.5 24.3 34.7 

AllTrain2 2.7 94.8 3.0 99.1 0.4 

AllTune 1.8 95.7 3.1 99.3 0.6 

Perfect2 0.0 97.1 2.2 99.5 0.3 

Table 4: Current results in [%] for ATC concept recognition 
on 116/40 data set. 
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We created a second ASRU model AllTrain2 – this 

encompasses acoustic model, language model, and com-
mand extraction model – with training based on speech 
data, correct transcriptions, and correct annotations of 
many different available ATC environments including 
two en route environments, three approach environ-
ments, and an apron environment as well as some multi-
ple remote tower data. This model was applied on the 
complete multiple remote tower data – that was already 
part of the training data – resulting in a WER of 2.7%, a 
command recognition rate of 95% (error rate 3%), and a 
callsign recognition rate of 99% (error rate 0.4%) as 
shown in Table 4. 

When using the improved command extraction model 
with enhancements for seldom used commands or new 
commands such as STATION, based on transcriptions 
with a WER of 0% in mode Perfect2, we achieve a com-
mand recognition rate of 97% (error rate 2.2%) and a 
callsign recognition rate of 99.5% (error rate 0.3%). 

We created a third ASRU model AllTune – this en-
compasses acoustic model, language model, and com-
mand extraction model – with fine-tuning the first model 
PartTrain with the same data as for the second ASRU 
model AllTrain2. The AllTune model was applied on the 
complete multiple remote tower data – that was already 
part of the fine-tuning data – resulting in a WER of 1.8%, 
a command recognition rate of 96% (error rate 3.1%), 
and a callsign recognition rate of 99.3% (error rate 0.6%) 
as shown in Table 4. 

If four out of five ATC commands as given with a 
command recognition rate of around 80% in Table 1 Live 
mode are automatically recognized and entered correctly 
into digital flight strips, this already saves manual effort 
of the ATCo to enter command content into the controller 
working position. This result was already achieved based 
on a WER of 11%. 

With an even lower WER, a positive effect on the 
speech understanding metrics as outlined in Table 1 and 
4 can be expected. For example, the recognition of com-
mand types, values, qualifiers, and conditions as calcu-
lated with a command recognition rate of 92.5% requires 
a manual correction by the ATCo in less than every 13th 
recognized command if ASRU output was visualized, 
e.g., in digital flight strips. This again, could translate into 
less ATCo workload, i.e., faster execution times for a 
secondary task, which can be interpreted as a higher 
availability of mental capacity of ATCos if they get 
ASRU support. 

 

If the callsign error rate is below 1%, this means that 
less than every 100th callsign is wrongly recognized and, 
in case of callsign highlighting in an ATCo display, 
might rarely drag ATCo attention to an unintended spot. 
However, ASRU can enable to very often drag ATCo at-
tention to the desired display spots. 

Independent of the concrete ASRU result values hav-
ing the same order of magnitude for other multiple re-
mote tower or ATC setups in general, the ATCo tool sup-
port with given ASRU performance showed to be a val-
uable support for HITL-RTS simulations in the ATC do-
main. 

4 Conclusion 
We presented an iterative process, which enables to adapt 
existing speech recognition and understanding (ASRU) 
models to new environments, for which in the beginning 
no recorded training voice utterances exist. This, how-
ever, is a prerequisite to use ASRU support already dur-
ing first human-in-the-loop simulations for new environ-
ments. First speech data for rough adaptation of existing 
ASRU models can be gained by the presented web-based 
online tool. Efforts for traveling and training as required 
for HITL-RTS itself were not necessary. The word error 
rate (WER) from untrained models of approximately 
77% decreased to 11% in the case study using the de-
scribed process model’s first iterations. Data from initial 
training and verification runs can be used to iteratively 
fine-tune existing ASRU models for final simulation 
runs, which in turn improve the ASRU performance fur-
ther. 

The integration of ASRU lead to feasible ATCo sup-
port for ATC HITL-RTS. It supports ATCos maintaining 
aircraft information in electronic flight strips even with a 
WER of 11%, because the resulting command recogni-
tion rates of above 80% are already sufficient to free 
mental capacity for ATC tasks as shown through a sec-
ondary task. The performance difference of the second-
ary task with and without ASRU support has demon-
strated that. Without integration of ASRU support al-
ready during first simulations, the results with respect to 
ATCo workload measurements might be useless, because 
ASRU support can reduce ATCos’ workload by 20%. 

Using all recordings from the 12,500 utterances of 
116 simulation runs with 40 different ATCos for fine-
tuning an ASRU model enabled a WER of 3% resulting 
in command recognition rates of 92-95% and callsign 
recognition rates of 99%.  
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Similar results can be expected for other new ATC 

environments modelled in simulators when using the pre-
sented iterative approach starting with recordings sup-
ported by a web-based tool. 
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