
93

The Filtering Effect on Simulated Signals under
Consideration of Entropy Methods

Alexander Edthofer*, Andreas Körner

Institute of Analysis and Scientific Computing, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria;
*alexander.edthofer@tuwien.ac.at

SNE 35(2), 2025, 93-97, DOI: 10.11128/sne.35.sn.10733

Selected ASIM SST 2024 Postconf. Publication: 2024-12-10

Received Improved: 2025-03-12; Accepted: 2025-03-20

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. In this work, we investigate the impact of low-
pass filters on two entropy methods, Permutation En-
tropy (PE) and Entropy of Difference (EoD), using simu-
lated noise signals. Colored noise, specifically white, pink
and brown noise, was generated and filtered with pass-
band frequencies of 30 Hz, 40 Hz and 50 Hz, alongside
unfiltered signals. The PE and EoD valueswere computed
to analyze the effects of filtering. The results indicate
that both entropy measures decrease with lower pass-
band frequencies. PE can effectively distinguish between
pink and brown noise with and without a lowpass filter,
while EoD shows similar differentiation onlywith filtering.
These findings highlight the sensitivity of entropy mea-
sures to lowpass filtering, with implications for their ap-
plication in EEG analysis.

Introduction

Simulated signals such as noise are often used for mod-

eling and comparison of situations or occurrences of

real-world phenomena.

Pink noise is very common in biosystems, as these

are stochastic, self-organizing and their equilibrium is

at the lowest energy level possible [1]. In the context of

biomedicine, noise can be thought of as an idealized or

abstracted signal. The brain activity of awake humans

resembles pink noise when measured by an electroen-

cephalogram (EEG) [2].

During unconsciousness, higher frequencies are not

as present compared to the awake stage. Therefore,

brain activity in this stage can be better compared to

brown noise [3].

In the field of EEG analysis, usually there are band-

pass filters applied on the measured signals [4].

The permutation entropy (PE) [5], first introduced

in 2002, is a commonly used parameter in research in

this field of application [6, 7], the entropy of difference

(EoD) [8] is new and not yet established in EEG anal-

ysis, but seems promising. In this work, we investigate

the impact of lowpass filters on these two entropy meth-

ods under the use of raw simulated signals using colored

noise.

The effect of linear filters on white noise using the

PE has already been shown in [9]. However, no other

colored noise was considered. In the case of EoD, no

such research has been conducted.

The computations were performed on a laptop with

16 GB RAM, an AMD Ryzen 5 5500U processor

with operating system Microsoft Windows 10 Pro us-

ing MATLAB version R2023b.

1 Methods

This section introduces the methods used to analyze

noise signals and their entropy measures.

Firstly, the properties of different noise signals, in

particular, white, pink, and brown noise, are described,

including their spectral characteristics and their genera-

tion by stochastic processes.

Secondly, an explanation of the two entropy-based

metrics for analyzing time series follows, i.e. PE, which

is based on the frequency distribution of ordinal pat-

terns, and EoD, which considers changes between adja-

cent values.

These methods allow a quantifiable assessment of

the complexity and structure of stochastic processes and

are applied to simulated signals in the remainder of this

paper.
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The left picture shows an example for white (top), pink (middle) and brown (bottom) noise signals with white depicted
in black and pink and brown in their respective colours. A sampling frequency of 200Hz and a duration of 10s are
chosen. The magnitude of each signal is illustrated on the y-axis over the time given in seconds on the x-axis. The
corresponding PSDs are given in the right picture. The loglog plot shows the equal distribution of the frequencies for
the white noise and a decrease in power when the frequencies increase for pink and even more for brown noise.

1.1 Noise signals

Stochastic processes can be used to generate noise sig-

nals. The most common ones for model analysis are

white, pink and brown noise [10], which also coincide

with the simulated signals for the application of EEG

analysis.

Their power spectral densities (PSD) in general are

given by S( f ) = L( f )
| f |α with L being a positive, slowly

varying or even constant function. White noise has a

uniform distribution of the frequencies, i.e. Sw( f ) =
L( f ), which means α = 0.

A mathematical description is derived by the time-

derivative of a Brownian motion process [11]. Pink

noise is defined with α = 1 as Sp( f ) = L( f )
| f | , i.e. higher

frequencies appear with lower amplitude. Brown noise

has an even stronger decrease than pink as α = 2, which

results in Sb( f ) = L( f )
| f |2 .

Figure 1 shows the course of white, pink and brown

noise with their respective PSDs. The simulated signals

in this work are generated using the MATLAB function

dsp.ColoredNoise.

The noise signals are compared with two entropy

methods. There are different lowpass-filters applied to

the signals, which are compared as well. For this, the

MATLAB function lowpass is used. Figure 2 shows

the course of the different colored noise and their re-

spective PSDs with a 30Hz lowpass filter.

1.2 Permutation entropy

The PE was first introduced in [5]. A given times series

(xt) = (x1, ...,xN) is divided in tuples of length m, which

is called the order.

For each tuple, an ordinal pattern is determined, for

length m there are m! possible combinations. The PE is

defined as

PE =− 1

log(m!)

m!

∑
i=1

pi log pi, (1)

where pi defines the probability of occurrence of

pattern i and the base of the logarithm is two.

The coefficient − 1
log(m!) represents a normalization

factor, such that PE ∈ [0,1]. If two values in one tuple

are equal, i.e. xi = x j, we choose the rule that xi < x j
for i < j. A detailed mathematical description is given

in [7, 12].

1.3 Entropy of difference

An alteration of the PE is the EoD, defined by Pasquale

Nardone in [8]. Again, a time series (xt) is divided in

the same amount of tuples of length m.

For this method, one considers the neighboring val-

ues within a tuple and compares them. The encoding is

given only by + and −, depending if there is an increase

or decrease between the values. If two neighboring val-

ues would be equal, we again apply the rule that xi < x j
for i< j. For tuples of length m, there are 2m−1 possible

patterns that can be achieved. The EoD is then defined

as

EoD =− 1

m−1

2m−1

∑
i=1

pi log pi, (2)

where pi again defines the probability of occurrence of

pattern i.
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The left picture shows an example for white (top), pink (middle) and brown (bottom) noise signals with a 30Hz lowpass
filter with white depicted in black and pink and brown in their respective colours. A sampling frequency of 200Hz and a
duration of 10s are chosen. The magnitude of each signal is illustrated on the y-axis over the time given in seconds on
the x-axis. The corresponding PSDs are given in the right picture. In comparison to the unfiltered case, the loglog plot
shows a sharp decline at the lowpass-frequency.

The base of the logarithm is two, such that the coef-

ficient − 1
m−1 is also a normalization factor, i.e. EoD ∈

[0,1]. A detailed description of the EoD is given in the

publication [12].

2 Results

For our study, colored noise with 5 · 106 sample points

was created.

Firstly, the simulated signal is lowpass filtered by a

passband frequency of either 30 Hz, 40 Hz or 50 Hz.

Considering also unfiltered signals, this makes a total

of four different scenarios. These passband frequencies

were chosen as these are also used in the application of

EEG analysis [4].

Secondly, the sample was rearranged to 1665 vec-

tors each containing 3000 values.

Comparing such a vector to a recorded signal with a

sampling frequency of 200 Hz, this would correspond to

15 s. As stated by [4], this is indeed a reasonable setting

in terms of sampling frequency and signal duration in

the application field of EEG analysis.

Next, the simulated signals were decoded in the re-

spective patterns of the PE and EoD and afterwards the

corresponding entropy values were calculated.

The results of the two different entropies are given

in the case of orders m = 3 and m = 7. For the PE, the

most common orders are between 3 and 7 [5].

A graphical representation of the results for the

1665 samples is given in Figure 3 for m = 3 using

boxplots, which were created using the MATLAB

function boxplotgroup.

The y-axis refers to the entropy values, which are de-

fined in equations (1) and (2), shown between 0.5 and

1 as these are the minimal and maximal value that ap-

pear in our study. The four different filter scenarios are

indicated on the x-axis.

For order 3, a decrease of the PE value from white

to pink to brown noise is observable, independent of the

applied filter. EoD does not show the same behavior, as

for no lowpass filter, there is an increase of the values

from white to brown noise.

In general, a decrease in the lower passband fre-

quencies is observable for PE and EoD with a more

prominent decrease in the case of PE.
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Entropy values of order m = 3 and different filters
for white, pink and brown noise.
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This is reasonable because, when lowpass filtering

is done, fewer patterns occur. The PE can distinguish

between pink and brown noise for all four scenarios as

none of the respective boxplots overlap. The EoD man-

ages this task only for the three scenarios in which low-

pass filtering was applied. For the PE with m = 3 and

no filtering, the results coincide with the ones of [10]

and therefore confirm them.

The results for order m = 7 are shown in Figure 4,

created with the same function and settings as before.

The PE for order 7 shows a similar course to m = 3

although the decrease for a lower passband frequency

is even stronger. However, it still separates pink and

brown noise well, as the boxplots again are not overlap-

ping.

The EoD for order m= 7 cannot distinguish between

pink and brown noise even for the filtering scenarios.

The values for white noise are in all cases lower than

those for pink noise.
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Figure 4: Entropy values of order m = 7 and different filters
for white, pink and brown noise.

3 Discussion

In this work, we tested different lowpass filters on col-

ored noise and investigated their impact on PE and EoD.

Passband frequencies of 30 Hz, 40 Hz and 50 Hz

were compared with no lowpass filtering, as these three

are most commonly used in the field of EEG analysis

[4].

The results show that the EoD behaves differently,

if no filter is s et. For any other of the three scenarios,

EoD behaves similar to the PE for order m = 3. For the

order m = 7, the results differ, as white noise does not

achieve the highest EoD value, but pink noise.

One can see as well that the lower the passband fre-

quency was set for the lowpass filter, the lower the en-

tropy values get. For the PE and white noise, this was

already indicated in [9].

We also showed the effect on other types of noise

as well as a similar impact on the EoD. However, the

decrease in value in the latter case is not as strong as for

the PE.

We also considered a highpass filter, usually there is

a passband frequency of 0.5 Hz, but this did not show

any effect on the values of the two entropy methods.

The quality of EoD in comparison to PE, especially

in the application of EEG analysis, is done in [12].

Here, we showed that EoD has lower computational

cost than PE with an equally good performance of clas-

sifying sleep states and even better classification results

for vigilance states during anesthesia.
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