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Introduction
Many industries, like semiconductor fabrication, re-

quire challenging thermal processing which need to be

simulated and controlled very precisely, see e.g. [1].

The thermal dynamics modeling and its control design

cover a wide range in the literature, depending on the

geometry and research focus, see e.g. [1, 4] and [2,

Ch. 2, 6, 8, 9]. The control design for small models

can be simple and practical but they are limited for en-

hancements. In contrast, purely theoretical approaches

might be too complex for realistic applications. In our

contribution, we propose an extendable and easy-to-

implement approach as a 2-dimensional geometry with

multiple actuators along one boundary side and multi-

ple sensors on the opposite. This is a simplified model

of the realistic 3-dim. situation, see [3]. We approx-

imate the spatial derivatives via finite differences and

we obtain a high-dim. state space, which is solvable

through eigenvalue computation in Section 1.
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Based on these results, we derive the time discrete

solution, the state feedback with linear-quadratic regu-

lation and the reference tracking in Section 2. Finally,

we visualize in Section 3 the proper operating closed-

loop behavior.

1 Two-dimensional Heat
Conduction

We assume a rectangle Ω = (0,L)× (0,W ) with length

L> 0, width W > 0, see Fig. 1. We note the position x=
(x1,x2)

� ∈ Ω. The rectangle has the boundary ∂Ω =
Ω\Ω = BW ∪BE ∪BS ∪BN with the sides BW = {0}×
[0,W ] (west), BE = {L}× [0,W ] (east), BS = [0,L]×
{0} (south) and BN = [0,L]×{W} (north). The object

consists of a solid material with density ρ > 0, specific

heat capacity c > 0 and anistropic thermal conductivity

λ1 > 0 along x1-axis (or length) and λ2 > 0 along x2-

axis (or width).

The anisotropy describes the physical situation to

conduct heat faster along one axis compared to the other

axis. We summarize these material properties as diffu-

sivity constants α1 := λ1
cρ and α2 := λ2

cρ .
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The evolution of temperature in the plate θ : [0,T ]×
Ω → R solves the two-dimensional heat equation

d
dt

θ(t,x) = α1
∂ 2

∂x2
1

θ(t,x)+α2
∂ 2

∂x2
2

θ(t,x) (1)

for (t,x) ∈ (0,Tf inal ]× Ω, with an initial temperature

distribution θ(0,x) = θ0(x) and boundary conditions

λ1
∂

∂x1
θ(t,x) = 0 , x ∈ BW ∪BE , (2)

λ2
∂

∂x2
θ(t,x) =

{
−φin(t,x) for x ∈ BS,

0 for x ∈ BN .
(3)

The boundary conditions in Eq. (2, 3) describe a ther-

mal insulation (no thermal losses) and heat can only be

supplied along boundary BS via the heat flux

φin(t,x) =
Nu

∑
n=1

bn(x) un(t) (4)

with Nu ≥ 1 as the number of actuators. We assume that

the boundary side BS consists of segments βn ⊆ BS such

that BS =
Nu⋃

n=1
βn and each actuator operates only on its

segment and has the spatial characteristics

bn(x) =

{
mn exp

(‖Mn [x− xc,n]‖2νn
)

for x ∈ βn

0 for x ∈ BS \βn

with mn ∈ [0,1], Mn > 0 and νn ∈ N>0 for n ∈
{1, . . . ,Nu}. Furthermore, we assume an arbitrary pos-

itive input signal un : [0,T ) → R>0. Analog to the ac-

tuator setup, we consider temperature measurements on

boundary side BN . Each temperature sensor operates

only on its segment γn ⊆ BN with BN =
Ny⋃

n=1
γn where

Ny ≥ 1 denotes the number of sensors. We assume the

temperature measurement

yn(t) =
1∫

γn
gn(x)dx

∫
γn

gn(x) θ(t,x)dx (5)

for n ∈ {1, . . . ,Ny} and with the sensor characterization

gn : γn → [0,1] analog to bn. We approximate the

spatially derivatives in heat equation (1) next, to

derive the large-scale state space system. The heat

conduction modeling approach with the actuator and

sensor characteristics is also described in [3, 4].

We assume that all finite difference nodes are inside

the rectangle as x j,m := ([ j − 1
2 ]Δx1, [m− 1

2 ]Δx2)
� for

j ∈ {1,2, . . . ,J} and m ∈ {1,2, . . . ,M} with J > 0 and

M > 0, see the dots in Fig. 1. We introduce the global

index i( j,k) := j +(k− 1) J and the temperature vec-

tor of the nodes Θ(t) := (θ(t,x1), . . . ,θ(t,xi),θ(t,xNc))
with totals number of nodes Nc = J M. We ap-

proximate the second-order derivatives with finite dif-

ferences ∂ 2

∂x2
1

≈ 1
Δx2

1

D1 in x1-direction with D1 =

diag( D̃1, . . . , D̃1︸ ︷︷ ︸
M matrix blocks

) and

D̃1 =

⎛
⎜⎜⎜⎜⎜⎝
−1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −1

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

J×J

and for the x2-direction we find ∂ 2

∂x2
2

≈ 1
Δx2

2

D2 with

D2 =

⎛
⎜⎜⎜⎜⎜⎝
−IJ IJ
IJ −2IJ IJ

. . .
. . .

. . .

IJ −2IJ IJ
IJ −IJ

⎞
⎟⎟⎟⎟⎟⎠ .

Summing up D1 and D2 with its coefficients, we note

the system matrix as

A =
α1

Δx2
1

D1 +
α2

Δx2
2

D2. (6)

In the matrices D̃1 and D2, we already consider the ther-

mally insulated boundary conditions but we have to in-

clude also the heat supply via

B =
α2

λ2 Δx2
(b̃1, . . . , b̃Nu)

with vectors b̃n :=
(
bn(x1,1), . . . ,bn(xJ,1),0J(M−1))

)�
.

So, we formulate the state space formulation

d
dt

Θ(t) = A Θ(t)+B u(t). (7)

with the temperature measurement y(t) = C Θ(t) from

Eq. (5).
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The output matrix is noted as C = (c̃1, . . . , c̃Ny)
�

with c̃n :=
(

0J×(M−1),g1, . . . ,gNy)
)

and elements gn, j =

gn(x j,M)/∑J
j=1 gn(x j,M). We know that we can find the

analytical solution of Eq. (7) as

Θ(t) = eA[t−t0] Θ(0)+
∫ t

t0
eA[t−τ] Bu(τ)dτ . (8)

However, as the the size of matrix A grows quadrati-

cally by Nc, the exact and fast computation of exp(A)
might be a problem for large systems Nc 
 1. If we

know the eigenvalues μi and eigenvectors ψi of A for

i ∈ {1, . . . ,Nc}, then we find the matrix exponential as

exp(A t) =V−1 diag(eμ1·t, . . . ,eμJM·t)V (9)

with V = [ψ1, . . . ,ψJM]. The article [5] states explicit

formulas for the pair (μi,ψi) for a 1-dim. heat equa-

tion problem and we extend this concept for our 2-dim.

problem. We assume f (z,n) := cos(z(2n−1)π) and we

state the eigenvalues of the 2-dim. problem as

μ j,m = −2p1 [1− f ([ j−1]/J,1)]

−2p2 [1− f ([m−1]/M,1)] (10)

with ( j,m) ∈ {1, . . . ,J}×{1, . . . ,M}, pl = αl/Δx2
l and

l ∈ {1,2}. We note the eigenvectors

ψi = (ψi,1, . . .ψi,JM)�

with vector elements

ψ( j,m),(ñ j ,ñm) = f
(

j−1

2J
, ñ j

)
f
(

m−1

2M
, ñm

)
(11)

for the indices (ñ j, ñm) ∈ {1, . . . ,J}×{1, . . . ,M}. The

proof of this assumption is omitted here, the correctness

of (μi,ψi) can be verified by evaluating Aψ = μψ with

cosine identities.

2 Controller Design

We sample the temperature in time as Θ(nΔT ) =: Θ(n)
for n ∈ {0, . . . ,� T

ΔT �} with sampling time ΔT > 0 and

we derive from Eqs. (8-11) the time-sampled system

Θ(n+1) = AD Θ(n)+BD u(n) (12)

with matrices

AD := exp(AΔT ) =V−1 diag(eμ1·ΔT , . . . ,eμJK ·ΔT )V ,

BD :=
∫ ΔT

0
exp(A [ΔT − τ])Bdτ .

The input signal u(n) := −K Θ(n) +W r(n) is de-

signed such that a state feedback K ∈R
Nu×J K stabilizes

the system and a static feed-forward filter W ∈ R
Nu×Ny

steers the measured temperatures to a static reference

signal r ∈ R
Ny . Feedback matrix K is found by solv-

ing the discrete infinite-horizon linear-quadratic regula-

tor problem

min
u

∞

∑
n=1

Θ(n)�Q Θ(n)+u(n)�R u(n) (13)

with subject to Eq. (12). The optimal control problem

(13) leads to the discrete time algebraic Riccati equation

P=Q+A�
DPAD−

[
A�

DPBD

][
R+B�

DPBD

]−1 [
B�

DPAD

]
where we compute matrix P to obtain the feedback gain

K =
[
R+B�

DPBD

]−1
B�

DPAD.

If the number of actuators and sensors coincide,

Nu ≡ Ny, then we find the filter matrix W to drive the

thermal dynamics to a constant reference value r. We

assume for n → ∞ an uniform temperature distribution

[AD −BD K] Θ(n)+BDWr = Θ(n) (14)

and a constant output

y(n) =CΘ(n) = r. (15)

We identify Θ in Eq. (15) with Eq. (14) and we use the

reference tracking y ≡ r to formulate the filter

W =−[
C(Ad −BdK − I)−1Bd

]−1
.

For more details on the control design, we refer to

introductory text books, e.g. [6, Ch. 7].

This is a sample text in blue. This is a sample

text in blue.This is a sample text in blue.This is a

sample text in blue.This is a sample text in blue.This is

a sample text in blue.This is a sample text in blue.This

is a sample text in blue.
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3 Simulation Case Study
We apply the proposed concepts on an example of a

steel plate with model parameters as in Table 1 and con-

troller configuration as in Table 2.

The initial temperature distribution is θ0(x1,x2) =
10sin(2π x1

L ). We design the controller such that it is

forced to act quickly Q 
 R and the static filter shall

steer the three measured temperatures towards the ref-

erence value r = (5,5,5)�.

The computed input signal u(t) and the resulting

measurement temperatures y(t) are depicted in Figure

2 and Figure 3. The input signals u2 and u3 start with

high initial values compared to u1 because they have

to increase the temperatures of y2 and y3, see Figure

3. All temperatures along boundary side BN converge

in Figure 4 after ca. 1200 seconds. We implemented

the simulation with JULIA programming language [7]

and solved the algebraic Riccati equation with the li-

brary MATRIXEQUATIONS.JL [8]. The full source code

is available [9].
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Discussion & Conclusion

In real world applications, we have to deal with thermal

emissions like convection and radiation on each bound-

ary side, which we did not consider in this contribu-

tion. Moreover, in 3-dim. objects we can only measure

the temperatures on the boundary, not inside the object.

However, as we require access to all temperatures for

the full state feedback, we have to compute them with
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