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Abstract.   Seq2Seq is a machine learning method that al-
lows to translate sequences into other sequences. This 
method has been tried in hybrid simulation of machine 
tools. The method has been used to generate time series 
of energy consumption of jobs from the corresponding 
numerical control code that runs on a machine tool. 
Seq2Seq suffers from various problems. Firstly, the crea-
tion of training data is costly. Secondly, standard Seq2Seq 
metrics only allow for the evaluation of a prediction of one 
timestamp at a time, not an entire time series. Thirdly, 
training metrics are failing when vanilla data is used, as 
two identical numerical control codes can result in deviat-
ing time series. This causes confusion for the model in the 
training loop, as it is not clear which time series should be 
considered correct.  
Here we propose a holistic framework to all three prob-
lems, that contains synthetic data, additional metrics for 
time series and dynamic time warping. 

Introduction 
Sequence-to-Sequence (Seq2Seq) [3, 16] is a class of ma-
chine learning (ML) methods that enables mapping two 
sequences of different lengths and different descriptions 
to each other. Seq2Seq utilizes artificial neural networks 
and is categorized under deep learning [4].  

In the context of simulation, Seq2Seq has already 
been successfully used to translate numerical control 
codes (NC codes) of a machine tool (MT) into a time se-
ries of the energy consumption of the same machine. For 
this, a training dataset is first created based on individual 
manufacturing orders (MO).  

This dataset contains the NC code and the corre-
sponding measured time series for each MO. The 
Seq2Seq model is then trained with this dataset. The 
trained model can now be activated with an NC code and 
subsequently outputs a time series based on the NC code 
[25]. Furthermore, the model can be used within a hybrid 
simulation to predict, for example, the duration of a MO 
or the energy consumption of machines [22, 26]. 

The Seq2Seq method suffers from several issues: 

1. Training Data:
The acquisition of training data is cost and time-intensive
[13, 21]. This effect is particularly strong for ML meth-
ods, as the amount of training data is equated with im-
proved learning performance [5]. As a solution, we pro-
pose the use of synthetic data [13, 21].

2. Lack of Metrics for Ambiguous Datasets
Training data for machine learning must generally be un-
ambiguous. Unambiguous here means that there is ex-
actly one solution for each sample in the training dataset.
This condition is violated for training data that includes
NC codes and time series, where slightly different time
series are measured for the same NC code. We propose
introducing a new learning metric that compares the gen-
erated time series at the end of a training period with a
comparison time series.

3. No Comparison Time Series:
Comparing generated time series with time series from
training data seems trivial at first glance. The problem
lies in two points. First, during the training of a Seq2Seq
model each data point in the time series is compared in-
dividually to one another [3, 16]. A comparison of time
series in their entirety does not take place. Second, for
ambiguous datasets, there is no single comparison time
series that can be used to compare entire time series. We
propose solving this problem with Dynamic Time Warp-
ing (DTW) [1, 15].
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The following chapters will propose the fundamentals 

of the suggested method and a concept based on it to 
solve all three of those problems. The core of the concept 
is to generate several time series based on all possible NC 
codes after each training run. Subsequently, the gener-
ated time series are compared with reference time series 
created by DTW. This is done iteratively at the end of 
each training run. Therefore, this approach is referred to 
as Iterating over Metrics (IOM). 

Next, the components necessary for the implementa-
tion of the concept will be explained in detail, and the 
results of the derived method will be presented. 

1 Fundamentals of the IOM-
approach 

For better understanding, the methods used in the pre-
sented IOM- approach will be briefly explained. 

1.1 Sequence-to-Sequence 
Artificial neural networks (ANNs) are used to identify 
patterns in complex data structures. When patterns 
change over time, this temporal sequence of patterns is 
understood as a sequence.  

To process temporal patterns, recurrent connections 
in ANNs are necessary, allowing feedback of abstracted 
knowledge [27]. Such feedback or recurrent neural net-
works (RNNs) are particularly suitable for data in se-
quential form [4]. 

When the data consists of sequences, these are re-
ferred to as Sequence-to-Sequence (Seq2Seq) architec-
tures. The input sequence is encoded through the input 
layer of an ANN.  

When the input sequence is encoded into a neural 
layer, it is called an encoder. When a target sequence is 
generated from a neural layer, this part is referred to as a 
decoder [4]. 
Such a topology is also commonly referred to as recurrent 
encoder-decoder networks (RNN-ED) [4]. Figure 1 de-
picts an ANN for the application of NC codes and time 
series. 

During training, all data of a sequence pair ,  are 
processed sequentially and mapped to each other. First, 
the input sequence  is encoded into a so-called context 
vector C. This context vector is then decoded into the out-
put sequence .  

The ML model learns the progression of  by updat-
ing the state of the context vector for each entry , .  

 

 
Figure 1: Components of an RNN Encoder-Decoder Topology. 
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The change in the state of the ANN is determined by 

a categorical cross-entropy loss function. The model then 
attempts to minimize this error [4]. 

The error value describes the difference between the 
target  and the predicted result . The prediction  is 
made in the final layer of the ANN, which uses a so-
called softmax activation function. However, this has the 
drawback that it can only compare one entry of  with 
the generated time series at a time [4]. 

Sequence-to-Sequence models led to the develop-
ment of Large Language models (LLM). This was made 
possible through the evolution from encode-decoder ar-
chitectures to Transformer architectures [28]. 

Further explanations of the encoder-decoder network 
used here can be found in [3, 4, 16]. 

1.2 Synthetic data from Simulation 
A fundamental problem in applying deep learning is the 
availability of training data. This data must be collected, 
checked for inconsistencies, preprocessed with analytical 
methods, and so on. This process often involves signifi-
cant costs and time. This is particularly evident in the ex-
ample of the dataset of NC codes and energy consump-
tion time series for manufacturing orders. 

If the machine tool in question does not have a suita-
ble interface, the NC code and the period during which it 
operates must be manually recorded and transferred into 
a data format. The creation of the energy time series da-
taset is even more complex.  

It requires identifying, implementing, and ultimately 
applying suitable measurement technology and software. 
This demands significant resources, including available 
personnel, as well as the availability of machine tools and 
measurement equipment. 

Once the prerequisites for recording the NC code and 
time series are met, the next question is whether the ma-
chine tool in the observed period has sufficient utilization 
to generate a large number of training data points. Given 
the size of datasets typically used in deep learning 
(>10k), this seems unlikely. 

Synthetic data can address this issue. Synthetic data 
are artificially generated data that resemble the original 
data in the relevant structure (length, features, feature fre-
quency, etc.). The advantage of synthetic data is that they 
can be created cost-effectively, transparently, and repro-
ducibly. Synthetic data can be generated through a simu-
lation model and then used as a training basis for ML 
models. 

The use of synthetic data in machine learning is not 
new and is an established research field [20]. For exam-
ple, Melo et al. [13] demonstrated that synthetic data can 
be used to train image recognition models. Other appli-
cations of synthetic data in deep learning include non-de-
structive testing of steel [2], object detection [23], creat-
ing vehicle boundary frames for autonomous driving 
[20], and pedestrian detection in image data [7]. 

Creating synthetic data through simulation tech-
niques is also not novel. Data farming has been used to 
create a data basis for deep learning in the simulation of 
production systems [9] or object detection for robots 
[19]. Additional applications include generating mobility 
data [8, 12], image data for heart tissue determination 
[10], or data for manufacturing planning and control [6]. 

1.3 Dynamic Time Warping 
Time series describe the progression of a feature over 
time, typically for a fixed measurement interval, meaning 
the same interval between individual data points. As a re-
sult, a time series is essentially a collection of temporally 
ordered data points. 

Comparing time series might initially seem like a triv-
ial problem. For instance, if comparing time series of a 
fixed period, such as the temperature over a day, one 
could simply overlay the time series of two days, calcu-
late their average to determine the mean temperature, or 
subtract them to find the temperature difference between 
two days. 

However, comparing time series that do not follow a 
fixed period is more complex. For example, in the case 
of time series for the energy consumption of a MO. Ma-
chine tools are dynamic systems. This means their state 
changes with each event, resulting in different appear-
ances for time series of the same NC code and the same 
machine. The differences can be observed in both dimen-
sions of the time series: the number of data points and the 
feature values of the time series. 

When comparing time series from dynamic systems, 
the following issues arise: 

Firstly, the time series will have a different number of 
data points. The length of a time series is determined by 
its number of data points. If there is a discrepancy, the 
additional data points in one time series cannot be com-
pared with the data points of the other time series because 
they are missing. If one were to remove the additional 
data points, it would make the time series comparable 
again, but potentially important data points could be lost.  
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Alternatively, one could fill the shorter time series with 
values until it matches the length of the longer time se-
ries. The challenge here is finding a value that can fill the 
shorter time series without adversely affecting it. 

Secondly, the characteristic patterns in the time series 
might shift due to missing data points. For example, these 
patterns could be a daily temperature peak at noon or, as 
in the mentioned case, recurring patterns in the tension 
profile of a machine tool. 

Considering Figure 2, the above-mentioned problems 
are further illustrated. Figure 2 a) shows a set of time se-
ries, all of which are slightly different in length and 
whose characteristics (such as slope, gradient, and return 
to the starting value) differ in both position and magni-
tude. If the time series were simply filled with values 
(e.g. the mean of the time series), one could compute the 
mean of all the time series. Figure 2 b) shows the result 
of this averaged time series. It is evident that this aver-
aged time series, except for its length, is no longer com-
parable to the original time series. 

A method that can compare time series of different 
lengths with varying positions of their characteristics is 
called Dynamic Time Warping (DTW) [1, 15]. DTW is 
an algorithm that compares a set of time series using a so-
called distance matrix.  

The distance matrix compares the data points of two 
(or a set of) time series using a distance measure, e.g. Eu-
clidean distance, Manhattan distance, etc. When compar-
ing two data points, their difference is recorded in the dis-
tance matrix.  

Then, a path is drawn through the distance matrix, 
known as the Warping Path (see the line in Figure 3). The 
optimal Warping Path is that path that, in total, has the 
shortest distance through the distance matrix compared 
to other paths. 

If the data points are close to each 
other, the Warping Path increases 
uniformly in each dimension (see 
Figure 3, Warping Path – bottom 
left). If the data points of two time 
series deviate from each other, the 
Warping Path either flattens out or 
rises sharply. 

Once a Warping Path is found, it 
can be used to create an averaged 
time series through DTW. For ex-
ample, Figure 2 c) shows a time se-
ries that is clearly comparable in 
length and shape to the individual 

                                 time series from Figure 2 a). 
Further literature on Dynamic Time Warping can be 

found in [1, 14, 15, 17]. 
 

 
Figure 3: Distance matrix of two time series compared us-

ing Dynamic Time Warping (shown on the left and 
at the top) [17]. 

2 IOM-Concept 
The IOM- approach consists of several steps (compare 
Figure 4). First, to address the cost and availability issues 
of training data, it will be generated using a simulation 
model. 

In the second step, reference time series are created. 
These are used to make the time series generated by the 
model comparable.  

 
Figure 2: Comparison of a) a set of time series, b) the mean of that set and  

c) a time series that was generated from the set via DTW  
(Figures taken from [14]). 
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   Figure 4: Concept of the IOM-approach 

6. Selec on of the nal model

Once the training is completed, the model that ed the metrics the best is selected

1. Save aggregated metrics along with the ml-model
a er each epoch / itera on

5. Evalua on of the ml-model

2. Keep ontraining the model un l number of
predeterminedepochs is reached

4. Generate me series from ml-model

1. create me series from trained
model

2. Compare me series from ml-
model with DTW reference me

series via metrics

3. Aggregate the mean of applied
metrics over all me series

samples

3. Train the ml-model for 1 epoch / itera on

Train the model for exactly 1 epoch / itera on
with synthesized data

2. Reference me series through Dynamic Time Warping

Create DTW reference me series from synthesized data

1. Synthesized data from simula on

Create sequencesvia simula on

O
ve

r a
ll 

ep
oc

hs

Training Phase

Input Series
(=numerical

control code)

RNN- Encoder-
Decoder

Target Series
(=

ener
me
gy usag

series
e)

of

En
co

de
r

De
co

de
r

Un
w

ei
gh

te
d

RN
N

Inference Phase

Input Series
(=numerical

control code)

RNN- Encoder-
Decoder

Generated Series
(=

energy usag
me series of

e)

En
co

de
r

De
co

de
r

W
ei

gh
te

dR
NN

numerical
control codes

Tokenizer

Time
Series Discre za on



Wörrlein & Straßburger    Dynamic Time Warping / Synthetic Data for Validating Seq2Seq Simulation 

208        SNE 34(4) – 12/2024 

T N 

This is done using Dynamic Time Warping, with the 
data foundation being the previously generated synthetic 
data that will also be used for training. 

Third, the training of the ML model is initiated. The 
model is trained for exactly one iteration (Note: To re-
duce computation limitations, 10 epochs are combined 
into one iteration). In the fourth step, the trained model is 
used to generate time series.  

Comparing entire time series is necessary to address 
the problem described in Chapter 1.1, where the model’s 
softmax function only compares individual data points 
step by step, not entire time series. 

The quality of the generated time series is then as-
sessed by comparing them with the reference time series 
produced by DTW. After metrics comparisons are made 
for all considered time series, these are aggregated. The 
average of each individual metric across all time series is 
computed.  

In the subsequent fifth step, the model undergoes fur-
ther training and repeats steps 3 and 4 until a predeter-
mined number of epochs is reached. Again, a summary 
of metrics is created in each iteration, and the trained 
model is saved. In the sixth and final step, the model that 
achieved the best results in the evaluated metrics is se-
lected. 

3 Experimental Preparation 
To implement the IOM- concept, several preparatory 
steps are necessary. For once there is the generation of 
synthetic time series data through the simulation model. 
Additionally, the creation of comparison time series us-
ing Dynamic Time Warping. Finally, the metrics defined 
in the previous chapter must be developed and integrated 
into the model training process. 

3.1 Creation of synthetic 
              time series data 
To create synthetic time series, the 
simulation tool AnyLogic (see Figure 
5) is used. In AnyLogic, a discrete-
event simulation model is set up. In the 
model’s source contains manufactur-
ing orders (A, B, or C) that are gener-
ated randomly.  

These orders enter a queue and then 
move to a waiting area. Only one (MO) 
can be in the waiting area at a time. 
Each MO is assigned its own waiting 
time, which follows a continuous uni-
form distribution of [0.95;1].  

Once the waiting area is occupied by an MO a function 
associated with that MO is executed. These functions dif-
fer for each of the three MO types (see Figure 6).  

They are mathematical functions that use the remain-
ing waiting time of the MO as an input parameter. The 
outputs of these functions thus vary over time. The com-
puted value is then altered through another uniform dis-
tribution function and finally output. 

The uniform distribution in the waiting area and in the 
output functions ensures that the time series for the same 
type of MO will slightly differ each time. This addresses 
the problem described initially, where two measured time 
series of the same MO never match exactly in length and 
value progression. Thus, it is ensured that two MO with 
the same label are represented with comparable, but not 
identical time series. Figure 6 illustrates samples of the 
generated time series. The uniform distribution in the 
output values is clearly visible here. 

 
Figure 6: Sample of time series created by simulation model. 

Figure 5: AnyLogic Simulation Model. 
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3.2 Generation of reference time series 

through Dynamic Time Warping 
To create reference time series, Dynamic Time Warping 
is used. DTW generates a reference time series from a set 
of time series, which exhibits minimal overall error in 
length and structure compared to the original set.  

The calculation is performed using the Python library 
tslearn [17]. The specific DTW algorithm used here is 
softDTW [11]. softDTW has a higher error tolerance in 
the creation of the Warping Path, which positively af-
fects the generation of averaged time series [11]. 

Figure 7 shows a time series generated by softDTW 
compared to two samples of manufacturing order C. The 
softDTW time series effectively summarizes the samples 
but does not merely replicate them. Instead, it emulates 
their shape and length. 

 
Figure 7: Comparison of 2 synthetic time series of  

type C with the time series created for  
type C through softDTW. 

 
Figure 8: Sample of time series created via softDTW. 

Figure 8 shows the softDTW time series for all three 
manufacturing orders. Compared to Figure 6, the differ-
ence between the original and DTW-generated time se-
ries is evident. The time series all exhibit a similar length 
and shape but differ slightly, as they are derived from the 
entire set of time series. 

3.3 Implementation of metrics into the 
Sequence-to-Sequence Model 

During model training, the generated time series are com-
pared with the DTW-generated time series as a reference. 
Subsequently, the values of the metrics for the individual 
time series are averaged over an entire training epoch. 
Two metrics were used for this purpose. 

First, the mean squared error (MSE) is applied. This 
compares the time series by calculating the difference be-
tween each individual data point and then squaring these 
differences.  

All differences are then summed to provide a measure 
of the overall quality of the time series. Squaring the dif-
ferences has two advantages. First, all differences be-
come positive, which means that negative and positive 
error values do not cancel each other out in the subse-
quent addition. Second, squaring gives more weight to 
large errors compared to small ones. 

The second metric, sigma length, considers only one 
dimension of the time series, more precisely its length. 
This metric calculates the number of data points in both 
time series and then divides one by the other. The closer 
the result is to 1, the more similar the generated time se-
ries is to the reference time series in terms of length. 
 
def results(ml_ts, dtw_ts, iteration): 
 

mean_squared_error_accuracy = 
mean_squared_error(ml_ts, dtw_ts) 
 

sigma_length_accuracy = 
len(ml_ts) / len(dtw_ts) 
 
results = 
{"Iteration":iteration, 
"MSE":mean_squared_error_accuracy, 
"Sigma_Length":sigma_length_accuracy} 
 

return results 

 
Code 1: Pseudocode of the MES and sigma length metrics 

to compare two time series. ml_ts marks the 
time series that was created through the ma-
chine learing model. dtw_ts is the reference time 
series that was created via DTW. 
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When a training run is completed, time series are gen-

erated with the trained model. These are then compared 
using the metrics described in Code 1, and the results for 
each time series are saved.  

Next, a summary for the entire iteration is calculated. 
This aims to provide a comprehensive assessment of the 
model at a particular training stage. Hence, all MSE and 
sigma length results are averaged.  

The mean allows for a more robust statement about 
the model's ability to generate time series than examining 
individual time series. 

4 Experiment Execution 
The creation of synthetic time series was carried out in 
AnyLogic. Python was used as the programming lan-
guage. The calculation of DTW-generated time series 
was performed in tslearn [17], and the creation of the ML 
model in TensorFlow [18].  

The hardware available included a Ryzen 7 2700 X 
processor, an RTX 2080Ti graphics card with 4352 
CUDA cores, and a 480 GB SSD. 

The IOM- approach involves saving the ML model 
after each epoch. However, this could not be imple-
mented with the available storage capacity. Therefore, it 
was decided to save the trained the model after 10 epochs 
(here: equal to 1 iteration) and only collect metrics for the 
last epoch of an iteration.  

The model was trained for 1000 epochs (subsequently 
100 iterations). 

The training data as described in Chapter 3 consisted 
of labeled sequence pairs formed from 2 manufacturing 
orders each to increase the variations in the dataset. The 
dataset was comprised of 10,000 labeled sequence pairs. 

4.1 Comparison of metrics 
As described in the IOM- concept, averaged metrics are 
to be generated at the end of each iteration. The progres-
sion of these metrics is plotted in Figure 9. The results of 
MSE and sigma length are shown.  

To select the optimal model, the optimum of both 
metrics is determined. The optimum of a metric is the 
value at which the metric achieves the best result. For 
MSE, this would be 0, as MSE considers the difference 
between all data points. For sigma length, it would be 1, 
as this metric examines the ratio of the length of one time 
series to another.  

To illustrate, the optimum for sigma length is graph-
ically represented (blue line in Figure 9). All iterations 
that lie on the blue line represent models that have 
achieved the optimal value in the sigma length metric. 

In a second step, iterations where sigma length  1 
are examined for their value in the MSE metric. The green 
line in Figure 9 at iteration 91 (=epoch 910) corresponds 
to the iteration where the values for both metrics are the 
lowest. Therefore, the model from epoch 910 is therefor 
selected. 

 

 
Figure 9: Metrics of the IOM Approach. Top: Averaged 

MSE. Bottom: Averaged sigma length. The blue 
line marks the optimum of sigma length (=1). The 
green line indicates the selected iteration. 

4.2 Comparison of metrics 
The model can now be used to generate time series. Fig-
ure 10 shows all 9 possible variants on which the ML 
model was trained.  

The blue time series was generated by the ML model. 
The orange time series is the reference time series created 
by DTW. The visual comparison confirms the function-
ality of the IOM- approach. 
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5 Critical Review 
The presented IOM- approach was able to meet the re-
quirements set for it. 

On the one hand, it was shown that synthetic data gen-
erated through simulation can be used for training ML 
models. These synthetic data could be generated cost-ef-
fectively, transparently, and appropriately for the specific 
application. 

Furthermore, the implementation of specialized met-
rics ensured that entire time series could now be com-
pared, not just individual data points via the softmax 
function as in the Seq2Seq base model. 

It was subsequently demonstrated that DTW time se-
ries can be used to form reference time series for com-
parison via the metrics. The use of DTW was necessary 
to address the issue of ambiguity in sets of time series 
with identical descriptions (e.g., the same NC code). 

Finally, it was shown that time series can be gener-
ated that hardly differ from the analytically generated Dy-
namic Time Warping time series. The time series are al-
most identical in form and length. 

The method itself offers potential for further research 
questions. For instance, it could be further validated by 
significantly enlarging the dataset or generating several 
different manufacturing orders in the simulation.  

Additionally, the ML model here only generated time 
series from NC codes that were already present in the 
training data. It remains to be investigated to what extent 
the model can generate time series in the case of an un-
known NC code. This is a general challenge for all gen-
erative AI applications as they lack labels for unlabelled 
data to compare its output to. 

A disadvantage of the presented method is the re-
quirement for computational and storage resources. A 
model must be saved for each iteration, although after de-
termining the optimal model, all others can be deleted. 
This drawback can be mitigated by applying the compar-
ison of metrics during the training and not just once af-
terwards. This way models that underperform could be 
identified and removed sooner. Also, the calculation of 
the metrics exceeds the time spent here for training the 
model when done on an epoch-by-epoch basis. This of-
fers room for improvement aswell. 

 
Figure 10: Comparison of all time series created at epoch 910 with the DTW reference time series.  

The legend in the variants indicates the lengths of the two time series. 
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