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Abstract. Seg2Seq is a machine learning method that al-
lows to translate sequences into other sequences. This
method has been tried in hybrid simulation of machine
tools. The method has been used to generate time series
of energy consumption of jobs from the corresponding
numerical control code that runs on a machine tool.
Seq2Seq suffers from various problems. Firstly, the crea-
tion of training data is costly. Secondly, standard Seq2Seq
metrics only allow for the evaluation of a prediction of one
timestamp at a time, not an entire time series. Thirdly,
training metrics are failing when vanilla data is used, as
two identical numerical control codes can result in deviat-
ing time series. This causes confusion for the model in the
training loop, as it is not clear which time series should be
considered correct.

Here we propose a holistic framework to all three prob-
lems, that contains synthetic data, additional metrics for
time series and dynamic time warping.

Introduction

Sequence-to-Sequence (Seg2Seq) [3, 16] isaclass of ma-
chine learning (ML) methods that enables mapping two
sequences of different lengths and different descriptions
to each other. Seq2Seq utilizes artificial neural networks
and is categorized under deep learning [4].

In the context of simulation, Seq2Seq has already
been successfully used to translate numerical control
codes (NC codes) of amachinetool (MT) into atime se-
ries of the energy consumption of the same machine. For
this, atraining dataset isfirst created based on individual
manufacturing orders (MO).

This dataset contains the NC code and the corre-
sponding measured time series for each MO. The
Seq2Seq model is then trained with this dataset. The
trained model can now be activated with an NC code and
subsequently outputs a time series based on the NC code
[25]. Furthermore, the model can be used within ahybrid
simulation to predict, for example, the duration of aMO
or the energy consumption of machines [22, 26].

The Seq2Seq method suffers from several issues:

1. Training Data:

The acquisition of training datais cost and time-intensive
[13, 21]. This effect is particularly strong for ML meth-
ods, as the amount of training data is equated with im-
proved learning performance [5]. As a solution, we pro-
pose the use of synthetic data[13, 21].

2. Lack of Metrics for Ambiguous Datasets

Training data for machine learning must generally be un-
ambiguous. Unambiguous here means that there is ex-
actly one solution for each sample in the training dataset.
This condition is violated for training data that includes
NC codes and time series, where dlightly different time
series are measured for the same NC code. We propose
introducing a new learning metric that compares the gen-
erated time series at the end of atraining period with a
comparison time series.

3. No Comparison Time Series:

Comparing generated time series with time series from
training data seems trivial at first glance. The problem
liesin two points. First, during the training of a Seq2Seq
model each data point in the time series is compared in-
dividually to one another [3, 16]. A comparison of time
series in their entirety does not take place. Second, for
ambiguous datasets, there is no single comparison time
series that can be used to compare entire time series. We
propose solving this problem with Dynamic Time Warp-
ing (DTW) [1, 15].
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Thefollowing chapterswill propose the fundamentals
of the suggested method and a concept based on it to
solve all three of those problems. The core of the concept
isto generate several time seriesbased on all possibleNC
codes after each training run. Subsequently, the gener-
ated time series are compared with reference time series
created by DTW. This is done iteratively at the end of
each training run. Therefore, this approach is referred to
as Iterating over Metrics (IOM).

Next, the components necessary for the implementa-
tion of the concept will be explained in detail, and the
results of the derived method will be presented.

1 Fundamentals of the IOM-
approach

For better understanding, the methods used in the pre-
sented |OM- approach will be briefly explained.

1.1 Sequence-to-Sequence

Artificial neural networks (ANNS) are used to identify
patterns in complex data structures. When patterns
change over time, this tempora sequence of patterns is
understood as a sequence.

To process temporal patterns, recurrent connections
in ANNS are necessary, allowing feedback of abstracted
knowledge [27]. Such feedback or recurrent neura net-
works (RNNs) are particularly suitable for data in se-
quential form [4].

When the data consists of sequences, these are re-
ferred to as Sequence-to-Sequence (Seg2Seq) architec-
tures. The input sequence is encoded through the input
layer of an ANN.

When the input sequence is encoded into a neural

layer, it is called an encoder. When a target sequence is
generated from aneural layer, this part isreferred to asa
decoder [4].
Such atopology isaso commonly referred to asrecurrent
encoder-decoder networks (RNN-ED) [4]. Figure 1 de-
picts an ANN for the application of NC codes and time
series.

During training, all dataof asequencepair {X;,Y;} are
processed sequentialy and mapped to each other. First,
the input sequence X; is encoded into a so-called context
vector C. Thiscontext vector isthen decoded into the out-
put sequence;.

The ML model learns the progression of Y; by updat-
ing the state of the context vector for each entry y; 7.
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Figure 1: Components of an RNN Encoder-Decoder Topology.
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The change in the state of the ANN is determined by
acategorical cross-entropy loss function. The model then
attempts to minimize this error [4].

The error value describes the difference between the
target y; and the predicted result ¥,. The prediction ¥, is
made in the final layer of the ANN, which uses a so-
called softmax activation function. However, this hasthe
drawback that it can only compare one entry of y; with
the generated time series at atime [4].

Sequence-to-Sequence models led to the develop-
ment of Large Language models (LLM). This was made
possible through the evolution from encode-decoder ar-
chitectures to Transformer architectures[28].

Further explanations of the encoder-decoder network
used here can befound in [3, 4, 16].

1.2 Synthetic data from Simulation

A fundamental problem in applying deep learning is the
availability of training data. This data must be collected,
checked for inconsi stencies, preprocessed with analytical
methods, and so on. This process often involves signifi-
cant costs and time. Thisis particularly evident in the ex-
ample of the dataset of NC codes and energy consump-
tion time series for manufacturing orders.

If the machine tool in question does not have a suita-
bleinterface, the NC code and the period during which it
operates must be manually recorded and transferred into
adata format. The creation of the energy time series da-
taset is even more complex.

It requires identifying, implementing, and ultimately
applying suitable measurement technology and software.
This demands significant resources, including available
personnel, aswell asthe availability of machinetoolsand
measurement equipment.

Once the prerequisites for recording the NC code and
time series are met, the next question is whether the ma-
chinetool in the observed period has sufficient utilization
to generate alarge number of training data points. Given
the size of datasets typically used in deep learning
(>10k), this seems unlikely.

Synthetic data can address this issue. Synthetic data
are artificially generated data that resemble the original
datain therelevant structure (length, features, feature fre-
guency, etc.). The advantage of synthetic dataisthat they
can be created cost-effectively, transparently, and repro-
ducibly. Synthetic data can be generated through a simu-
lation model and then used as a training basis for ML
models.

The use of synthetic data in machine learning is not
new and is an established research field [20]. For exam-
ple, Melo et al. [13] demonstrated that synthetic data can
be used to train image recognition models. Other appli-
cations of synthetic datain deep learning include non-de-
structive testing of steel [2], object detection [23], creat-
ing vehicle boundary frames for autonomous driving
[20], and pedestrian detection in image data[7].

Creating synthetic data through simulation tech-
niques is also not novel. Data farming has been used to
create a data basis for deep learning in the simulation of
production systems [9] or object detection for robots
[19]. Additional applicationsinclude generating mobility
data [8, 12], image data for heart tissue determination
[10], or data for manufacturing planning and control [6].

1.3 Dynamic Time Warping

Time series describe the progression of a feature over
time, typically for afixed measurement interval, meaning
the same interval between individual datapoints. Asare-
sult, atime seriesis essentially a collection of temporally
ordered data points.

Comparing time seriesmight initially seem like atriv-
ial problem. For instance, if comparing time series of a
fixed period, such as the temperature over a day, one
could ssimply overlay the time series of two days, calcu-
late their average to determine the mean temperature, or
subtract them to find the temperature difference between
two days.

However, comparing time series that do not follow a
fixed period is more complex. For example, in the case
of time series for the energy consumption of aMO. Ma-
chine tools are dynamic systems. This means their state
changes with each event, resulting in different appear-
ances for time series of the same NC code and the same
machine. The differences can be observed in both dimen-
sions of the time series: the number of data points and the
feature values of the time series.

When comparing time series from dynamic systems,
the following issues arise:

Firstly, thetime serieswill have adifferent number of
data points. The length of atime series is determined by
its number of data points. If there is a discrepancy, the
additional data points in one time series cannot be com-
pared with the data points of the other time series because
they are missing. If one were to remove the additional
data points, it would make the time series comparable
again, but potentially important data points could belost.
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b)

Figure 2: Comparison of a) a set of time series, b) the mean of that set and
c) a time series that was generated from the set via DTW

(Figures taken from [14]).

Alternatively, one could fill the shorter time series with
values until it matches the length of the longer time se-
ries. The challenge hereisfinding avalue that can fill the
shorter time series without adversely affecting it.

Secondly, the characteristic patternsin the time series
might shift due to missing data points. For example, these
patterns could be adaily temperature peak at noon or, as
in the mentioned case, recurring patterns in the tension
profile of amachinetool.

Considering Figure 2, the above-mentioned problems
are further illustrated. Figure 2 @) shows a set of time se-
ries, all of which are dightly different in length and
whose characteristics (such as slope, gradient, and return
to the starting value) differ in both position and magni-
tude. If the time series were simply filled with values
(e.g. the mean of the time series), one could compute the
mean of al the time series. Figure 2 b) shows the result
of this averaged time series. It is evident that this aver-
aged time series, except for its length, is no longer com-
parable to the original time series.

A method that can compare time series of different
lengths with varying positions of their characteristics is
called Dynamic Time Warping (DTW) [1, 15]. DTW is
an algorithm that compares a set of time series using a so-
called distance matrix.

The distance matrix compares the data points of two
(or aset of) time series using a distance measure, e.g. Eu-
clidean distance, Manhattan distance, etc. When compar-
ing two data points, their differenceisrecordedinthedis-
tance matrix.

Then, a path is drawn through the distance matrix,
known asthe War ping Path (seethelinein Figure 3). The
optimal Warping Path is that path that, in total, has the
shortest distance through the distance matrix compared
to other paths.
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If the data points are close to each
other, the Warping Path increases
uniformly in each dimension (see
Figure 3, Warping Path — bottom
|eft). If the data points of two time
series deviate from each other, the
Warping Path either flattens out or
rises sharply.

Once aWarping Pathisfound, it
can be used to create an averaged
time series through DTW. For ex-
ample, Figure 2 c) shows atime se-
ries that is clearly comparable in
length and shape to the individual
time series from Figure 2 a).

Further literature on Dynamic Time Warping can be
foundin[1, 14, 15, 17].

Figure 3: Distance matrix of two time series compared us-
ing Dynamic Time Warping (shown on the left and
at the top) [17].

2 1I0OM-Concept

The IOM- approach consists of several steps (compare
Figure 4). First, to address the cost and availability issues
of training data, it will be generated using a simulation
model.

In the second step, reference time series are created.
These are used to make the time series generated by the
model comparable.
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Over all epochs

Symbol (A1)

Create sequencesvia simulation

Create DTW reference time series from synthesized data

Train the model for exactly 1 epoch/ iteration
with synthesized data

2. Compare time seriesfromml- | 3. Aggregate the mean of applied
model with DTW reference time metrics over all time series
series via metrics samples

1. create time series from trained
model

1. Save aggregated metrics along with the ml-model 2. Keep ontraining the model until number of
after each epoch/ iteration predeterminedepochsis reached

Once the training is completed, the model that fitted the metrics the best is selected

Figure 4: Concept of the IOM-approach
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3.1 Creation of synthetic
time series data

Figure 5: AnyLogic Simulation Model.

This is done using Dynamic Time Warping, with the
data foundation being the previously generated synthetic
data that will also be used for training.

Third, the training of the ML model isinitiated. The
model is trained for exactly one iteration (Note: To re-
duce computation limitations, 10 epochs are combined
into oneiteration). In the fourth step, the trained model is
used to generate time series.

Comparing entire time series is necessary to address
the problem described in Chapter 1.1, where the model’s
softmax function only compares individual data points
step by step, not entire time series.

The quality of the generated time series is then as-
sessed by comparing them with the reference time series
produced by DTW. After metrics comparisons are made
for all considered time series, these are aggregated. The
average of each individual metric across all time seriesis
computed.

In the subsequent fifth step, the model undergoes fur-
ther training and repeats steps 3 and 4 until a predeter-
mined number of epochs is reached. Again, a summary
of metrics is created in each iteration, and the trained
model is saved. In the sixth and final step, the model that
achieved the best results in the evaluated metrics is se-
lected.

3 Experimental Preparation

To implement the 1OM- concept, several preparatory
steps are necessary. For once there is the generation of
synthetic time series data through the simulation model.
Additionally, the creation of comparison time series us-
ing Dynamic Time Warping. Finally, the metrics defined
in the previous chapter must be devel oped and integrated
into the model training process.

] SNE 34(4) - 12/2024

To create synthetic time series, the
simulation tool AnylLogic (see Figure
5) is used. In AnylLogic, a discrete-
event simulation model is set up. Inthe
model’s source contains manufactur-
ing orders (A, B, or C) that are gener-
ated randomly.

€ These orders enter aqueue and then
moveto awaiting area. Only one (MO)
can be in the waiting area at a time.
Each MO is assigned its own waiting
time, which follows a continuous uni-
form distribution of [0.95;1].

Once the waiting area is occupied by an MO a function
associated with that MO is executed. These functions dif-
fer for each of the three MO types (see Figure 6).

They are mathematical functions that use the remain-
ing waiting time of the MO as an input parameter. The
outputs of these functions thus vary over time. The com-
puted value is then altered through another uniform dis-
tribution function and finally output.

Theuniform distribution in the waiting areaand in the
output functions ensures that the time series for the same
type of MO will slightly differ each time. This addresses
the problem described initially, where two measured time
series of the same MO never match exactly in length and
value progression. Thus, it is ensured that two MO with
the same label are represented with comparable, but not
identical time series. Figure 6 illustrates samples of the
generated time series. The uniform distribution in the
output valuesis clearly visible here.
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Figure 6: Sample of time series created by simulation model.
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3.2 Generation of reference time series
through Dynamic Time Warping

To create reference time series, Dynamic Time Warping
isused. DTW generates areference time seriesfrom a set
of time series, which exhibits minimal overall error in
length and structure compared to the original set.

The calculation is performed using the Python library
tdearn [17]. The specific DTW agorithm used here is
softDTW [11]. softDTW has a higher error tolerance in
the creation of the Warping Path, which positively af-
fects the generation of averaged time series[11].

Figure 7 shows a time series generated by softDTW
compared to two samples of manufacturing order C. The
softDTW time series effectively summarizes the samples
but does not merely replicate them. Instead, it emulates
their shape and length.

—— Original Time Series of C
—— DTW Time Series of C

1400

1200

1000 4

values

800

600

0 20 40 60 80 100 120
time steps
Figure 7: Comparison of 2 synthetic time series of
type C with the time series created for
type C through softDTW.
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Figure 8: Sample of time series created via softDTW.

Figure 8 shows the soft DTW time series for al three
manufacturing orders. Compared to Figure 6, the differ-
ence between the original and DTW-generated time se-
riesisevident. Thetime seriesall exhibit asimilar length
and shape but differ slightly, asthey are derived from the
entire set of time series.

3.3 Implementation of metrics into the
Sequence-to-Sequence Model

During model training, the generated time seriesare com-
pared with the DTW-generated time series as areference.
Subsequently, the values of the metricsfor theindividual
time series are averaged over an entire training epoch.
Two metrics were used for this purpose.

First, the mean squared error (MSE) is applied. This
comparesthetime series by calculating the difference be-
tween each individual data point and then squaring these
differences.

All differences are then summed to provide ameasure
of the overall quality of the time series. Squaring the dif-
ferences has two advantages. First, all differences be-
come positive, which means that negative and positive
error vaues do not cancel each other out in the subse-
guent addition. Second, sgquaring gives more weight to
large errors compared to small ones.

The second metric, sigma length, considers only one
dimension of the time series, more precisely its length.
This metric calculates the number of data points in both
time series and then divides one by the other. The closer
the result isto 1, the more similar the generated time se-
riesisto the reference time series in terms of length.

def results(ml ts, dtw_ts, iteration):

mean squared error accuracy =
mean squared error(ml ts, dtw ts)

sigma length accuracy =
len(ml _ts) / len(dtw_ts)

results =

{"Iteration":iteration,
"MSE":mean squared error_ accuracy,
"Sigma_ Length":sigma length accuracy}

return results

Code 1: Pseudocode of the MES and sigma length metrics
to compare two time series. ml_ts marks the
time series that was created through the ma-
chine learing model. dtw_ts is the reference time
series that was created via DTW.
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When atraining run is compl eted, time series are gen-
erated with the trained model. These are then compared
using the metrics described in Code 1, and the results for
each time series are saved.

Next, asummary for the entireiteration is calcul ated.
This aims to provide a comprehensive assessment of the
model at a particular training stage. Hence, al MSE and
sigma length results are averaged.

The mean allows for a more robust statement about
the model's ability to generate time series than examining
individual time series.

4 Experiment Execution

The creation of synthetic time series was carried out in
AnyLogic. Python was used as the programming lan-
guage. The calculation of DTW-generated time series
was performed intslearn [17], and the creation of the ML
model in TensorFlow [18].

The hardware available included a Ryzen 7 2700 X
processor, an RTX 2080Ti graphics card with 4352
CUDA cores, and a480 GB SSD.

The I0OM- approach involves saving the ML model
after each epoch. However, this could not be imple-
mented with the available storage capacity. Therefore, it
was decided to save the trained the model after 10 epochs
(here: equal to 1 iteration) and only collect metricsfor the
last epoch of an iteration.

The model wastrained for 1000 epochs (subsequently
100 iterations).

The training data as described in Chapter 3 consisted
of labeled sequence pairs formed from 2 manufacturing
orders each to increase the variations in the dataset. The
dataset was comprised of 10,000 labeled sequence pairs.

4.1 Comparison of metrics

As described in the IOM- concept, averaged metrics are
to be generated at the end of each iteration. The progres-
sion of these metricsis plotted in Figure 9. The results of
MSE and sigma length are shown.

To select the optimal model, the optimum of both
metrics is determined. The optimum of a metric is the
value at which the metric achieves the best result. For
MSE, this would be 0, as MSE considers the difference
between all data points. For sigma length, it would be 1,
as this metric examinesthe ratio of the length of onetime
seriesto another.

pXI]  SNE 34(4) - 12/2024

To illustrate, the optimum for sigma length is graph-
ically represented (blue line in Figure 9). All iterations
that lie on the blue line represent models that have
achieved the optimal value in the sigma length metric.

In a second step, iterations where sigma length = 1
areexamined for their valuein the MSE metric. Thegreen
linein Figure 9 at iteration 91 (=epoch 910) corresponds
to the iteration where the values for both metrics are the
lowest. Therefore, the model from epoch 910 is therefor
selected.

Mean MSE over iterations

4 x 105
3x10°
s
wvi
=
2 x 10°
0 20 40 60 80 91 100
iterations (1 iteration = 10 epochs)
Mean Sigma Length over iterations
1.8 1
1.6 1
£
5 1.4
c
i
] -
: 1.2
o
2
1.0 U‘J
0.8

0 20 40 60 80 91 100

iterations (1 iteration = 10 epochs)

Figure 9: Metrics of the IOM Approach. Top: Averaged
MSE. Bottom: Averaged sigma length. The blue
line marks the optimum of sigma length (=1). The
green line indicates the selected iteration.

4.2 Comparison of metrics

The model can now be used to generate time series. Fig-
ure 10 shows al 9 possible variants on which the ML
model was trained.

The blue time series was generated by the ML model.
The orangetime seriesisthereference time series created
by DTW. The visual comparison confirms the function-
ality of the IOM- approach.



Worrlein & StraBburger Dynamic Time Warping / Synthetic Data for Validating Seg2Seq Simulation

Result: A A Result: AB Result: AC
— Predicted Data Length 153 | Predicted Data Length 137 Predicted Data Length 196
DTW Data Aversge Length 156 1800 4 DTW Data Average Length 136 1804 1 DTW Data Average Length 195
g 1600 21600 2 1600
E 1400 E ,_.MJ. E 1400 4
.. £ £,
5 1200 3 12004 3 1200 4
= - v
2 1000 = 1000 = 1000
k4 8
3 004 3 sood 3 so0
€00 500 600
o 0 40 60 80 100 120 140 160 o 20 a0 80 100 120 140 o 5 50 5 100 125 150 175 200
Number of time steps Number of time steps Number of time steps
Result: B A Result: B B Result: BC
Predicted Data Longth 138 13004 Predicted Data Langth 116 Prodicted Dats Length 172
1800 OTW Data Average Length 136 OTW Data Average Length 116 1400 4 OTW Data Average Length 175
12504
& 1600 o g
- - % 1200
E 1400 g 12004 g
% ;_‘ :é 1000
2 1200 ] 11504 z
B B 5
= 1000 . E
3 ¥ 1004 % 800
3 o0 3 a
1050 1
600 600 4
1000 4
o 20 40 60 80 100 120 140 0 0 40 80 100 120 o 1] 50 75 00 125 150 175
Number of time steps Numbaer of time steps Number of time steps
Result: CA Result: CB Result: CC
— Predicted Data Length 196 Predicted Data Length 177 Predicted Data Length 230
DTW Data Average Length 195 1400 DTW Data Average Length 175 1400 DTW Data Average Length 234
¢ 1600 g
" % 1200 #1200
» v u
g 1400 H H
= = =
§ 1200 £ 1000 & 1000
v ¥
2 1000 2 &
z ¥ 600 3 o0
3 ao0 3 3
o 600 600
o 25 50 75 100 15 150 175 200 (] 25 50 100 125 150 175 o 50 100 150 200

Number of Lime steps

Number of time steps Mumber of time steps

Figure 10: Comparison of all time series created at epoch 910 with the DTW reference time series.
The legend in the variants indicates the lengths of the two time series.

5 Critical Review

The presented |OM- approach was able to meet the re-
quirements set for it.

Ontheone hand, it was shown that synthetic datagen-
erated through simulation can be used for training ML
models. These synthetic data could be generated cost-ef-
fectively, transparently, and appropriately for the specific
application.

Furthermore, the implementation of specialized met-
rics ensured that entire time series could now be com-
pared, not just individual data points via the softmax
function as in the Seq2Seq base model.

It was subsequently demonstrated that DTW time se-
ries can be used to form reference time series for com-
parison via the metrics. The use of DTW was necessary
to address the issue of ambiguity in sets of time series
with identical descriptions (e.g., the same NC code).

Finally, it was shown that time series can be gener-
ated that hardly differ from the analytically generated Dy-
namic Time Warping time series. The time series are al-
most identical in form and length.

The method itself offers potential for further research
questions. For instance, it could be further validated by
significantly enlarging the dataset or generating several
different manufacturing orders in the simulation.

Additionally, the ML model here only generated time
series from NC codes that were already present in the
training data. It remains to be investigated to what extent
the model can generate time series in the case of an un-
known NC code. Thisis ageneral challenge for al gen-
erative Al applications as they lack labels for unlabelled
data to compare its output to.

A disadvantage of the presented method is the re-
quirement for computational and storage resources. A
model must be saved for each iteration, although after de-
termining the optimal model, all others can be deleted.
This drawback can be mitigated by applying the compar-
ison of metrics during the training and not just once af-
terwards. This way models that underperform could be
identified and removed sooner. Also, the calculation of
the metrics exceeds the time spent here for training the
model when done on an epoch-by-epoch basis. This of-
fers room for improvement aswell.
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