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Ignoring uncertainty in combinatorial opti-
mization leads to suboptimal decisions in practice. Nev-
ertheless, the focus is often on deterministic combinato-
rial optimization problems, mainly because they are al-
ready challenging enough without stochasticity. Tomake
it easier to address stochasticity in combinatorial op-
timization, Simheuristics have been developed that al-
low solving stochastic combinatorial optimization prob-
lems. We propose a new Simheuristic procedure that
dynamically changes the optimization focus between a
deterministic and stochastic perspective based upon a
statistical model. By doing so, an adequate trade-off is
made between exploration and exploitation of the so-
lution space during the optimization. We numerically
show that the new Simheuristic procedure solves real-
life stochastic scheduling problems more efficiently than
standard Simheuristics strategies.

Many real-world problems from various domains, such

as logistics, manufacturing, healthcare, and finance,

can be stated as combinatorial optimization problems

(COPs).

These real-life COPs are often NP-hard, meaning

there is little hope for an efficient algorithm that allows

finding t he o ptimal s olution f or a ll realistically-sized

problem instances [4]. Another complicating factor is

that the (input) parameters of COPs are often uncertain

in practice [3].

In this work, we focus on these stochastic COPs

(SCOPs) of the form

min
π∈S

E [ f (X ,π)] ,

where π denotes a solution from the discrete solution

space S, f (·) is the objective function, and X represents

the random variable(s) of the parameter(s) with known

(empirical) distribution(s).

The objective function f (·) is either a closed-form

expression or something that can be simulated (for ex-

ample, a complex production process). A challeng-

ing aspect of SCOPs is that E [ f (X ,π)] is generally in-

tractable, and we have to resort to (time-consuming)

Monte Carlo simulations to get sample-average ap-

proximations [3]. In both academia and practice, one

often replaces the unknown objective E [ f (X ,π)] by

f (E [X ] ,π) and optimizes the corresponding determin-
istic COP (DCOP) [3]:

min
π∈S

f (E [X ] ,π).

Indeed, evaluating a solution π in DCOP is done

quickly via one function evaluation, whereas finding a

good approximation to E [ f (X ,π)] requires many func-

tion evaluations. However, this comes at a price that a

good solution to DCOP can behave poorly in the corre-

sponding SCOP since E [ f (X ,π)] �= f (E [X ] ,π) in gen-

eral. Ignoring this is also known as flaw of averages
[5].

The combination of NP-hardness and the time-

consuming objective approximations via simulations

make SCOPs challenging to solve in practice. Fortu-

nately, so-called Simheuristics have shown to be able to

find good solutions to practical SCOPs in recent years

[3].



Overview of a Simheuristics framework from [3].

However, when the DCOP optimization stagnates,

shifting the optimization focus to simulation is likely

more beneficial, i.e., identifying the best SCOP solution

out of the most promising DCOP solutions.

The key to an effective Simheuristic application is

to determine when to switch this optimization focus:

switching too early misses out on the chance to find bet-

ter SCOP solutions efficiently, w hereas s witching too

late increases the chance of picking poor SCOP solu-

tions.

We propose a generic procedure for Simheuristics,

called OCBA-guided Simheuristic, that dynamically de-

termines when to focus on optimizing DCOP and when

to focus on simulation to obtain better expected objec-

tive values approximations.

Simheuristics provide a general framework to solve

largescale SCOPs by combining DCOP (meta) heuris-

tics with simulation [3]. In particular, the DCOP heuris-

tic is used as a relatively fast way to generate new so-

lutions for SCOP. Instead of simulating all newly found

solutions, only the promising solutions are briefly sim-

ulated to approximate their expected objective values.

When approaching the computation time limit, the

most promising solutions are awarded more simula-

tions for identifying the best solution to SCOP finally

(Simheuristic process illustrated in Figure 1 (from [3])).

Simheuristics are particularly effective for solving

SCOPs when: (i) efficient (meta)heuristics already ex-

ist for the DCOP, (ii) most gain is obtained in the first

part of the DCOP optimization, and (iii) f (E [X ] ,π) and

E [ f (X ,π)] are positively correlated for varying π . As a
result, the DCOP heuristic guides the optimization rel-

atively fast to more promising SCOP solutions [3].
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Results of solving a stochastic scheduling problem from [1] when optimizing DCOP only and using different
Simheuristics including our OCBA-guided Simheuristic that dynamically shifts the optimization focus
between DCOP and SCOP.

The idea is to keep track of a fixed-sized elite set of

the most promising solutions. At any time during the

optimization, we want to be “sure” about their expected

objective values. To that end, we want the expected

opportunity cost of the elite set to be smaller than a

user-defined threshold at any time.

The opportunity cost of the elite set is the difference

between the expected objective values of the solution

identified as best and the true best solution, and its ex-

pectation is calculated efficiently using Bayesian prob-

ability theory [2]. When the expected opportunity cost

exceeds the threshold (meaning we are “unsure” about

the expected objective values), the solutions from the

elite set will be simulated (and we temporarily stop the

DCOP optimization).

The simulation of the elite set is done efficiently by

making use of the Optimal Computing Budget Alloca-

tion (OCBA) from [2]. OCBA prescribes how to effi-

ciently allocate simulation budget among different solu-

tions to minimize the expected opportunity cost. Once

the expected opportunity cost drops below the thresh-

old, DCOP is optimized again to find new solutions that

may replace solutions from the elite set.

This process continues iteratively until the compu-

tation budget is spent. Then, the best solution from the

elite set is returned.

Preliminary Numerical
Results

The OCBA-guided Simheuristic is tested by solving

a stochastic version of a parallel machines scheduling

problem with sequence-dependent setup times faced in

the cattle feed industry [1].

In particular, we considered for different computa-

tion budgets, 50 instances based on real-life data (of 50

jobs, 4 parallel machines, and lognormally distributed

production durations) and computed the average ex-

pected objective values (which is the weighted sum of

the tardiness and the makespan) of the solutions found.

The results can be found in Figure 2. For comparison,

also the results of optimizing DCOP only and several

standard Simheuristics are added.



Conclusions
Preliminary results show that our OCBA-guided

Simheuristic outperforms other typical Simheuristics

for a stochastic scheduling problem. This shows the

potential of adequately switching the optimization fo-

cus between DCOP and SCOP.

In future research, we want to conduct more experi-

ments. Also, we want to incorporate past simulation in-

formation in the OCBA-guided Simheuristic and tailor

the simulation budget allocation rule to our purposes.
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