
29

S N E B E N C H M A R K N O T E

A Discrete Process Modelling Study of ARGESIM
Comparison ’C22 – Non-standard Queuing
Policies’ with Warteschlangensimulator

Alexander Herzog

Simulation Science Center Clausthal-Göttingen / TU Clausthal, Arnold-Sommerfeld-Straße 6,
x 38678 Clausthal-Zellerfeld, Germany; alexander.herzog@tu-clausthal.de

SNE 34(1), 2024, 29-34, DOI: 10.11128/sne.34.bn22.10674

Received: 2024-02-10; Revised: 2024-02-19

Accepted: 2024-02-22

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. ARGESIM benchmark “C22 – Non-standard
Queuing Policies” describes some queueing policies and
customer behaviors beyond the default first-in-first-out
rule. In this article it is studied how this policies can be
implemented and investigated using the discrete-event,
stochastic simulation tool Warteschlangensimulator.

Introduction

This article describes the implementation of the queue-

ing policies and customer behaviors described in AR-

GESIM Comparison “C22 – Non-standard Queuing

Policies” using the discrete-event, stochastic simulation

tool Warteschlangensimulator. A full description of the

considered policies can be found in the SNE model def-

inition [1].

Thinking of a queueing system, first-in-first-out

(FIFO) is usually assumed for the queue. But in real-

ity frequently other concepts like choosing the shortest

queue or individual priorities are used. Also impatience

of the customers is a frequently occurring property not

only of human customers but also in industrial context.

This article shows how these concepts can be imple-

mented and analyzed using Warteschlangensimulator.

1 Warteschlangensimulator

Warteschlangensimulator (see [2]) is a free and open

source, platform independent, Java-based, event-driven,

stochastic simulator.

The permissive Apache 2.0 license allows to use the

simulator in teaching, research and industrial / commer-

cial context without restrictions.

The simulator allows graphical modelling of queue-

ing systems in form of flow charts. Therefore over 100

station types are available. Inter-arrival times, service

times, waiting time tolerances etc. can be modelled us-

ing one of the 41 built-in probability distributions (in-

cluding the option to map measured values as an em-

pirical distribution). An automatic distribution fitter to

find a distribution that matches measured values best is

also available. For more complex definitions a formula

parser is integrated; so for example shifted or truncated

probability distribution can be used, too.

Models can be executed in animation mode showing

the movement of the entities through the system includ-

ing the display of queues and in a fast simulation mode

without graphical output using multiple CPU cores for

faster executing. Since the simulation runtimes are of-

ten in the range of a few seconds up to one minute, the

effects of changes to input parameters can be investi-

gated in a very interactive way.

During simulation all relevant statistic performance

indicators are recorded automatically and are available

via the built-in report viewer. Filtering and exporting

the results is also possible. The fact that recording

the performance indicators does not have to be config-

ured manually in the model keeps the modelling of even

large systems clear.

To handle complex control strategies, stations can

optionally be extended using Javascript or Java code for

branching, holding or changing entities passing through

the stations. While Javascript code is interpreted by an

internal Javascript engine, Java code is compiled on

the fly using the Java runtime environment running the

simulator itself and then executed with full machine

speed.

SNE 34(1) – 3/2024



30

Herzog Benchmark ’C22 – Non-standard Queuing Policies’ with Warteschlangensimulator

The built-in parameter study function and a built-in

optimizer allow to easily evaluate a model for different

parameter sets and to optimize a model with regard to a

target value.

Warteschlangensimulator comes with English and

German user interface, documentation and example

models. A German text book about modelling and

simulation using Warteschlangensimulator is also avail-

able, see [3].

2 Models

A full description of the considered models can be

found at [1]. All models considered in this article can

be downloaded from:

github.com/A-Herzog/Warteschlangensimulator

/tree/master/sne-benchmarks

In the model definition priority rules for concurrent

events were defined. Since Warteschlangensimulator

does not support a specific order for events to be exe-

cuted at the same time, these priority rules will not be

used in the following models.

2.1 Choosing the shortest line

A good heuristic for a customer to get the shortest wait-

ing time in a system consisting of multiple, parallel sta-

tions is to choose the station where the fewest customers

are located, see Figure 1.

The decide station at Warteschlangensimulator can

directly select the following station with the shortest

queue (NQ) or with the fewest entities at the station

(WIP). Either the immediately following stations or the

next following process stations on the path can be con-

sidered.

Schematic illustration of customers choosing the
shortest queue.

The second option requires that there are no further

decide stations on the path to the next process station,

i. e. that the relevant process station for each path can be

determined unambiguously. In case of tie between two

or more stations, the station can be chosen randomly,

top down or bottom up. For more complex decide rules

(like in the jockeying example) also scripts (Javascript

or Java code) can be used to branch the customers. A

script code based decide station can also be used if the

number of customers at the different stations is to be

evaluated using different weights (i. e. customers on the

“max. 5 items” express lane with a much lower weight

then customers at the extra large shopping carts lane).

2.2 Jockeying

Jockeying means that the last customer in a queue in

a system consisting of multiple parallel process sta-

tions with individual queues can change his queue if the

queue on one of the other stations becomes shorter than

the own queue. This behavior is usually combined with

initially choosing the shortest queue.

The process station building block template avail-

able in Warteschlangensimulator consists of the actual

process station and the queue in front of the station. To

map jockeying of the last customers of the queue, the

queue and the actual service process have to be split into

two stations: Customers are served at a regular process

station but the queue is organized at a script-based hold

station before the process station. The script at these

stations is triggered on each system state change (which

covers the relevant events of a customer arrival and any

state change at any process station). The scripts test two

things:

1. If the process station ahead is empty, the first cus-

tomer from the queue is released. The customer

will then be sent to the process station for service.

2. If the jockeying condition is fulfilled, the last cus-

tomer of the queue will get a “jockeying” flag and

will be released. In this case the customer will be

redirected to the decide station and will be sent to

the shorter queue, see Figure 2.

2.3 Reneging Queues

Impatience of customers is a very common property in

call center models and similar customer service sys-

tems. Human customers usually only have a limited

tolerance to wait in a queue.

SNE 34(1) – 3/2024



31

Herzog Benchmark ’C22 – Non-standard Queuing Policies’ with Warteschlangensimulator

Decide
(Script)

Hold
(Script) ProcessDecide:

Jockey flag?

Clear
Jockey flag

...Hold
(Script)

To „Clear
Jockey flag“

station

From „Decide:
Jockey flag?“

stations

...

...

No

Yes

Schematic illustration of a waiting line with jockeying.

If this waiting time tolerance is exceeded, the cus-

tomer will leave the system without being served. Impa-

tience also occurs in industrial environments: If a work-

piece can only be processed in a heated state, it cannot

not wait too long after the oven process to be served at

the next station.

If there are no special functions for mapping impa-

tience directly in the simulator, handling impatience is

quite hard: For each customer arriving at the queue a

waiting time tolerance has to be calculated and stored

with the customer object. At any time the waiting time

tolerance property of each customer has to be checked

and customers with an exceeded waiting time tolerance

have to be removed on a special path not leading to the

process station itself.

Warteschlangensimulator has a built-in impatience

option for customers at process stations. This allows

to add an impatience property for all customers or also

for only some customers types arriving at the station

with just one click. If a process station has two out-

going edges, one can be used for successful customers

and the other for customers who have given up wait-

ing. The waiting time tolerance (fixed value tR = 9 in

the model definition) can be any probability distribu-

tion (from which a random number is generated) or any

calculation expression. Furthermore the waiting time

tolerances formula of the customers can vary from cus-

tomer type to customer type and can include customer

specific data field values and runtime state information.

When simulating a model with impatience for each

customer arriving at the process station queue an indi-

vidual waiting time tolerance is calculated. The cus-

tomer is added to the queue and a special “Waiting time

tolerance exceeded” event is added to the events list in

the simulation system.

A reference to this event is stored in the customer

object. If the waiting time tolerance of the customer is

exceeded, the event is executed and the customer is re-

moved from the queue and forwarded via the “canceled

customers” edge. If the customer is selected for ser-

vice before his waiting time tolerance is exceeded, the

corresponding event is searched in the events list and re-

moved from there without being executed. This concept

allows to handle impatience in a from the discrete-event

point of view very light-weighted and therefore fast to

be executed way.

2.4 Reneging Queues — Simulation results

When using stochastic waiting time tolerances for the

customers, varying the average waiting time tolerance

and measuring the waiting times of the customers who

have canceled their waiting process (i. e. for which the

individual waiting time tolerance was exceeded and

therefore their waiting time tolerance equals their actual

waiting time), one can see that the customers who have

canceled the waiting process are usually the customers

with the rather short waiting time tolerances.

Figure 3 shows the simulation results for a model

with an average inter-arrival time of 100 seconds, an

average service time of 80 seconds (both exponentially

distributed) and one operator. The average waiting

time tolerance has been varied from 20 to 500 seconds.

The actual waiting time tolerances of the successful

customers (red dashed graph) mirrors the global

waiting time tolerance settings. But the customers who

cancel the waiting process (red solid line) have shorter

average waiting time tolerances and therefore are not

representative for the entirety of the customers.

SNE 34(1) – 3/2024



32

Herzog Benchmark ’C22 – Non-standard Queuing Policies’ with Warteschlangensimulator

Waiting time tolerances of the successful and the impatient customers.

This is an interesting fact and a big problem when

building simulation models for real customer service

systems: For the simulation model a formula is needed

to calculate the waiting time tolerances for all cus-

tomers. But as input parameter only the waiting time

tolerances of the customers who have canceled their

waiting process (their actual waiting times) can be mea-

sured. The waiting time tolerances of the successful

customers cannot be measured. For the successful cus-

tomers it is only known that their waiting time toler-

ances obviously have been longer than their actual wait-

ing times. So the not successful customers cannot be

used as representative for all customers. This problem

can be handled by using the method of parameter cali-

bration. See [4] for more details about waiting time tol-

erance calibration in the context of modelling call cen-

ter systems.

2.5 Classing Queues

In the model definition in [1], customers of a specific

type are only to be served during their class is called.

So there is no real resorting of the queue but instead

there are nC = 5 separate queues.

Depending on the currently active class only cus-

tomers from one of these queues are sent to the pro-

cess station. The concept of resorting the (single) queue

is much more considered when also allowing the non-

called classes to be served but to prioritize the called

class (as shown in Figure 2 in [1]).

Since Warteschlangensimulator is not using a lim-

ited set of predefined queueing policies (like FIFO,

LIFO etc.) but is always using priorities, this can be

implemented very easily: Each customer object carries

a user data vector which can be used for example to de-

fine the class of the current customer. Lets assume v1

is set to 1 for a customer, if the customer is of class 1,

and v2 is set to 1, if the customer is of class 2 etc. Lets

further assume the global variable clsA will be set to 1,

when class 1 is called etc. Then the service priority of a

single waiting customer can be calculated as

w+1000 · v1 · clsA+1000 · v2 · clsB+ . . . ,

where w is the current waiting time at the station. If

the class of the customer is not called (v1 · clsA = v2 ·
clsB = . . . = 0), the priority is the waiting time (which

means FIFO policy between these customers).

SNE 34(1) – 3/2024



33

Herzog Benchmark ’C22 – Non-standard Queuing Policies’ with Warteschlangensimulator

Waiting times of the prioritized and the not prioritized customers — using absolute priorities.

If class 1 is called (clsA = 1) and the customer is of

this class (v1 = 1) the priority is 1000 plus the waiting

time (and the same for all other customers of class 1).

This means the customers of class 1 will get 1000 sec-

onds advantage in the queue during their class is called.

Within all class 1 customers still FIFO is maintained.

If all class 1 customers are served, the other customers

will be served (also while maintaining FIFO).

2.6 Classing Queues — Simulation results

To show the effect of a strict prioritization a model with

two customer types is considered: A prioritized class

and a class of customers who is only served if there

are no prioritized customers in the queue. Figure 4

shows the waiting times of the prioritized and the not

prioritized customers when increasing the utilization of

the system (and therefore increasing the average overall

queue length). While the average waiting times of not

prioritized customers increase quickly when increas-

ing the utilization of the operator, the average waiting

times of the prioritized customers increase only slightly.

tem where customers of different types arrive.

When using softer priorities (not only serving non

prioritized customers if there are no prioritized

customers at all but for example using different weights

per waiting second in the priority formula), see Figure

5, the waiting time differences between the different

customers types can be adjusted more finely.

References
Model definition: C22 – Non-standard Queuing

Policies

www.sne-journal.org/benchmarks/c22

Warteschlangensimulator homepage

herzog.github.io/Warteschlangensimulator

Herzog, A. Simulation mit dem
Warteschlangensimulator. Wiesbaden: Springer

Gabler; 2021. 498 p.

Herzog, A. Callcenter – Analyse und Management.
Wiesbaden: Springer Gabler; 2017. 437 p.

SNE 34(1) – 3/2024



34

Herzog Benchmark ’C22 – Non-standard Queuing Policies’ with Warteschlangensimulator

Waiting times of the prioritized and the not prioritized customers — using relative priorities.

Javascript code for mapping the
jockeying property
The following Javascript code is used at the Javascript-

based hold station in front of the first process station in

the model shown in Figure 2.

// Which queue are we in?

let ownRow="A";

if (Simulation.getWIP(ownRow)==0) {

// Server is free. Release first waiting customer.

Clients.release(0);

} else {

// Customers at station A

let wipAQueue=Simulation.getWIP("AQ");

let wipAProcess=Simulation.getWIP("A");

let wipA=wipAQueue+wipAProcess;

// Customers at station B

let wipBQueue=Simulation.getWIP("BQ");

let wipBProcess=Simulation.getWIP("B");

let wipB=wipBQueue+wipBProcess;

// Customers at station C

let wipCQueue=Simulation.getWIP("CQ");

let wipCProcess=Simulation.getWIP("C");

let wipC=wipCQueue+wipCProcess;

// Customers at station D

let wipDQueue=Simulation.getWIP("DQ");

let wipDProcess=Simulation.getWIP("D");

let wipD=wipDQueue+wipDProcessM

// Minimum number of customers at a station

let wipMin=Math.min(wipA,wipB,wipC,wipD);

// Customers at the current station

let wipOwnQueue=Simulation.getWIP(ownRow+"Q");

let wipOwnProcess=Simulation.getWIP(ownRow);

let wipOwn=wipOwnQueue+wipOwnProcess;

// Is there a station with fewer customers?

if (wipOwn>wipMin+1) {

// Number of waiting customers

let waitingCount=Clients.count();

// Set jockeying flag for last waiting customer

Clients.clientData(waitingCount-1,1,1);

// Release last waiting customer.

Clients.release(waitingCount-1);

}

}

SNE 34(1) – 3/2024


