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Editorial  
Dear  Readers, This last issue of 2023, SNE 33(4), publishes seven contributions of mainly software related topics. We are glad, to 
continue with three ‘Software Notes’, presenting the impact of simulation software development for modelling. D. Jammer, P. Jun-
glas, T. Pawletta, and S. Pawletta present a simulator and applications for NSA-DEVS; T. Pawletta and J. Bartelt outline RL and 
DES with a new experimental frame concept within a case study in MATLAB/SimEvents; and P. Junglas reports on the implemen-
tation of thermodynamic cyclic processes by the DLR Thermofluid Stream Library. Three Technical Notes deal with a statistical model 
between cardiac parameters and driver fatigue (M. Bachler et al.), with testing for AI-based systems in aviation (B. Luki  et al.), and 
with use cases deploying DES and VR for digital tools for craft professionals (B. Prell, J. Reiff-Stephan) – all with software emphasis. 
For SNE Volume 33, Graham Horton from University Magdeburg, provided his computer-generated marbled pattern graphics. 
Graham Horton started modelling and simulating the handcraft of making marbled paper, used for covers in traditional bookbind-
ing. The algorithms in behind manufacture not only approximations of handmade marbled patters, they generate new marbled pat-
terns as type of algorithmic art: Digital Marbling. Below the cover pictures for SNE issues 2023, of type ‘Bird Wing’, ‘Italian Sis-
ters’, ‘Bouquet’, and ‘Serpentine’ (this issue) – many thanks to him. 
I would like to thank all authors for their contributions for this issue, also and many thanks to the SNE Editorial Office for layout, 
typesetting, preparations for printing, electronic publishing, and much more.  

Felix Breitenecker, SNE Editor-in-Chief, eic@sne-journal.org; felix.breitenecker@tuwien.ac.at 
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Abstract. The PDEVS formalism is widely used for the
description and analysis of discrete event systems. But
PDEVS has some drawbacks in modeling Mealy
behavior. A revised version (RPDEVS) has been invented
to resolve them, but it has problems of its own, mainly
because its complicated simulator structure. The
recently proposed NSA-DEVS scheme tries to unite the
advantages of both formalisms by using infinitesimal
time intervals.
To further substantiate this claim we describe an ab-
stract simulator for NSA-DEVS, implement it in Matlab
and simulate a simple queue-server system. This shows
that NSA-DEVS combines the Mealy-like model descrip-
tion of RPDEVS with the simple simulator structure of
PDEVS, making it a promising approach to implement an
improved modeling and simulation system.

Introduction
The DEVS formalism [1] and its most popular variant

PDEVS [2] are a well established approach for the mod-

eling and analysis of discrete event systems. Although

a few modeling and simulation tools exist that are us-

ing PDEVS [3], the usual formalism does not directly

support the implementation of component-based simu-

lation programs.

A few formal problems can be fixed by simple varia-

tions of the basic formalism [4], a well-known example

being the introduction of input and output ports. A more

serious flaw has been found by Preyser et al. [5]: Due

to the Moore-like structure of PDEVS the combination

of Mealy-type components can sometimes be difficult

to implement.

Using the standard workaround of transitory states

(i. e. states with transition times of 0) the behaviour of a

complete system can always be modeled with PDEVS.

But the description of the underlying components as

individual (“atomic”) blocks can lead to an ordering of

concurrent events in the complete system, which does

not agree with the intended behaviour.

Therefore Preyser et al. have introduced a Revised

PDEVS (RPDEVS) formalism [6] that uses a Mealy-

like scheme directly – without the introduction of tran-

sitory states – and allows for direct modeling of Mealy-

like components, which behave correctly in the context

of a larger system.

To make this possible they had to define a n ab-

stract simulator for RPDEVS [7] that uses a compli-

cated scheme of internal iterations.

However, for systems with a complex causal struc-

ture of concurrent events this iteration leads to prob-

lems, as has been shown in [8] using the example of

a queue-server system. To solve these problems and

to bring the modeling process closer to the underlying

ideas of the modeler, the NSA-DEVS (“Non-Standard

Analysis DEVS”) formalism has been introduced in [8],

which is a variant of RPDEVS and uses concepts of

non-standard analysis [9].

Another approach has been suggested to cope with

the ordering of concurrent events by augmenting the

real time line [10], but it doesn’t ad ress the Mealy-

related problems that RPDEVS and NSA-DEVS try to

solve.

The objective of the work presented here is to further

investigate the soundness and usefulness of the NSA-

DEVS formalism by defining a proper abstract simula-

tor. To this end we first review the model and simulator

specifications in PDEVS, then shortly introduce the hy-

perreal numbers and define the NSA-DEVS modeling

formalism.

Next we describe the abstract NSA-DEVS simulator

and highlight some crucial points of its implementation

in Matlab. Finally we implement the queue-server sys-

tem from [8] and demonstrate that it works as intended.

SNE 33(4) – 12/2023
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1 Short Review of the PDEVS
Formalism

The Discrete Event System Specification (DEVS) for-

malisms are divided into model specification and ab-

stract simulator which are explained in more detail in

the following for Parallel DEVS (PDEVS). The model

specification differentiates between atomic and coupled

models, which together form a hierarchical structure.

In the following, we introduce a simplified model spec-

ification for PDEVS that uses ports instead of input

bags [11, p.108]. The model specification of an atomic

model is an 8-tupel < X ,S,Y,δint ,δext ,δcon,λ , ta > with

X set of input ports and values,

Y set of output ports and values,

S set of sequential states,

δint : S → S internal transition function,

δext : Q×X+ → S external transition function,

δcon : S×X+ → S confluent transition function,

λ : S → Y+ output function,

ta : S → R
≥0 ∪{∞} time advance function.

Here Q = {(s,e)|s ∈ S, 0 ≤ e < ta(s)} and e is the

elapsed time since the last transition. The input and out-

put sets are defined as

X = {(p,v)|p ∈ Pin,v ∈ Xp}
Y = {(p,v)|p ∈ Pout ,v ∈ Yp}

where Pin and Pout are the sets of input and output names

and Xp and Yp are the sets of possible values at input or

output port p. Since inputs can arrive simultaneously at

different ports, one needs the set

X+ :=
{{(p1,v1), . . . ,(pn,vn)}|n ∈ N0, pi ∈ Pin,

pi �= p j for i �= j, vi ∈ Xpi

}
and similarly Y+ for simultaneous outputs at several

ports. Unlike in [11] simultaneous inputs at the same

port are not allowed here. This makes the formulation

of external transition functions easier, but prohibits the

direct connection of several output ports to one input

port. This is not a real limitation though, since one can

insert an appropriate atomic component (multiplexer)

for this purpose.

The formal specification of coupled models has

changed several times in the development of DEVS. For

practical purposes, the following specification is used in

this article: N =< X ,Y,D,{Md},EIC,EOC, IC >

root coordinator

coordinator

simulator coordinator

simulator simulator

coupled
DEVS

coupled
DEVS

atomic
DEVS

atomic
DEVS

atomic
DEVS

Coupling:
Message:

Hierarchical and distributed concept of the abstract
simulator.

X set of input ports and values,

Y set of output ports and values,

D set of component names,

{Md} set of dynamic systems with d ∈ D,

EIC set of external input couplings,

EOC set of external output couplings,

IC set of internal couplings.

Furthermore, the PDEVS formalism defines an abstract

simulator, which describes the execution of a specified

model [11, p.197]. It consists of the modules root coor-
dinator, coordinator and simulator. They are combined

in a hierarchical structure, which is shown in Fig. 1 for

a simple example.

The abstract simulator always consists of exactly

one root coordinator as the topmost instance. This is

always followed by a coordinator that is attached to the

uppermost coupled model. In addition, a coordinator

is assigned to each coupled model of the underlying

layers of the hierarchical structure, whereas a simula-

tor is assigned to each atomic model. The coordinators

and simulators form a tree structure that parallels the

model structure (cf. Fig. 1), where the leaves on the left

side are the simulators and on the right (model) side the

atomic components. The simulation is organized with

a message concept. Messages are exchanged between

root coordinator, coordinators and simulators, all down-

wards messages contain the current simulation time t.
The following message types are used:

• i-message: downwards for initialization,

• *-message: downwards to initiate internal events,

• y-message: upwards to distribute outputs,

• x-message: downwards to trigger events,

• d-message: upwards to return information.

SNE 33(4) – 12/2023
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This terminology follows [7], in [11] the d-messages

(“done”) are only implicitly mentioned in the pseu-

docode.

The simulation starts with an i-message that is sent

by the root coordinator to the topmost coordinator and

distributed downwards. Each simulator initialises its

atomic model and returns the time of its next internal

event to its parent coordinator. All coordinators collect

the times of their children and report the smallest value

upwards, until the root coordinator is reached, which

stores the received value as the current simulation time.

Next the root-coordinator sends a *-message, which

is forwarded according to the hierachical structure to all

simulators that are imminent, i. e. the time of their next

event is equal to the current simulation time. Each of

these simulators executes the λ -function of its atomic

model and sends the output to its coordinator via a y-

message. Using the set IC of its coupled model the co-

ordinator distributes the outputs to the appropriate child

simulators and coordinators via x-messages and sends

additional empty x-messages to the imminent children.

Furthermore the coordinator collects the external out-

puts according to the set EOC of its coupled model and

sends them upwards via a y-message.

On receiving an x-message a simulator executes one

of the three transition functions of its atomic model, de-

pending on the event type. An empty x-message means

an internal event, which causes the execution of the δint
function. A non-empty x-message represents an exter-
nal or confluent event. If the atomic model is not im-

minent, δext is executed, otherwise δcon f . After the ex-

ecution of a transition function, the time advance func-

tion ta is called to compute the time of the next internal

event, which is sent upwards. A coordinator, that re-

ceives an x-message, forwards it to its active children,

i. e. those that get a new input or are imminent.

As a result, the root coordinator receives the next

event time, updates the current simulation time and

sends a new *-message. This procedure is repeated un-

til the root coordinator detects a termination condition.

A complete description of the abstract simulator using

pseudocode is given in [11, p.350-353].

2 The NSA-DEVS Modeling
Formalism

The basic idea of the NSA-DEVS formalism is to start

with the RPDEVS description, to add infinitesimal de-

lays at the inputs of all components and to replace tran-

sitory states by states with infinitesimal transition times.

This has two immediate advantages: Firstly, the com-

plex iteration, that is necessary in the RPDEVS simu-

lator to handle the transport of events through networks

of Mealy-type components, is obsolete. Secondly, one

can easily define the ordering of concurrent events by

using appropriate delay times.

The introduction of infinitesimals to represent small

real delays avoids an abundance of unknown additional

parameters. Instead one can mainly use a default value

ε , using different values only for special needs. Fur-

thermore, the simulator handles the infinitesimal events

mainly internally, so that from the user perspective, cor-

rect Mealy behaviour can be achieved.

For a precise mathematical description of finite or

infinitesimal time delays we use the totally ordered field

of hyperreal numbers ∗
R. This is an extension of the

real numbers including an infinitesimal ε > 0, which is

smaller than any positive real number. Every finite hy-

perreal a is infinitely close to exactly one real number,

called the standard part of a and denoted by st(a). The

construction of ∗
R relies on advanced results from set

theory and logic, but its use is rather straightforward.

Exact definitions, theorems and proves can be found in

[9].

For the implementation of a simulator, numbers of

the form a+bε with a,b ∈R are sufficient, they can be

stored as a pair of floating point numbers. The standard

part then simply is st(a+bε) = a. To represent passive
states, i. e. states with an infinite transition time, the

hyperreal number ω := 1/ε , represented by the floating

point value “infinity”, can be used. ω is unlimited, i. e.

it is larger than any real number. In the following we

are mainly interested in the subset of positive finite

hyperreals ∗
R
>0
fin .

One can now formally define an atomic NSA-DEVS
as a 7-tuple < X ,S,Y,τ, ta,δ ,λ > in the following way:

X set of input ports and values,
S set of states,
Y set of output ports and values,

τ ∈ ∗
R
>0
fin input delay time,

ta : S → ∗
R
>0
fin ∪{ω} time advance function,

δ : Q×X+ → S transition function,
λ : Q×X+ → Y+ output function.

where the sets X , Y are defined as in section 1, but Q is

changed slightly to Q = {(s,e)|s ∈ S, 0 < e ≤ ta(s)}.

SNE 33(4) – 12/2023
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The main difference to the PDEVS formalism de-

scribed above is the restriction to only one transition

function and the extension of the output function, which

is now called at all three kinds of events. This is iden-

tical to the RPDEVS definition in [6] and allows for a

direct formulation of Mealy-type components. The for-

mal difference to RPDEVS is small: All time values

and intervals are now meant as subsets of the hyper-

reals ∗
R and ta is always > 0. But the semantics are

slightly different: When an external event, i.e. a set of

inputs x ∈ X+, occurs at time t, the output function λ
is called at t + τ , followed by an immediate call of δ .

An internal event, i.e. a state change after a waiting

time ta(s), leads to a direct (undelayed) call of λ and

δ . A concurrent incidence of a (delayed) external event

and an internal event can be detected by both functions

directly and doesn’t need a special mechanism.

A coupled NSA-DEVS is defined just like in

RPDEVS and PDEVS, outputs are transported as usual

and a coupled component has no additional input de-

lays. For the usual confirmation of closure under cou-

pling, i. e. the formulation of a coupled system as an

atomic component, one simply uses the smallest delay

of all internal components that are connected to external

inputs, and adds additional delays where necessary.

3 The Abstract NSA-DEVS
Simulator

The general concept of the abstract simulator is the

same as for PDEVS, it uses the hierarchical structure,

the message system and the three modules that have

been introduced in section 1. The algorithms of the

coordinator and the root coordinator for NSA-DEVS

are identical to the PDEVS versions described in [11,

p.205] and [11, p.352-353], the only difference are the

type of the current simulation time and the event times,

which are now hyperreals instead of real numbers.

The basic difference lies in the algorithm of the sim-

ulator module: Though it looks similar to the PDEVS

simulator in [11, p.351], it implements the NSA-DEVS

scheme, which directly supports Mealy-like behaviour

using infinitesimal input delays. Its simplified pseu-

docode description is presented in Listing 1.

Lines 1–7 list the variables used by the simulator.

The first five are the same as for PDEVS: the parent

coordinator, the times of the last and the next event, the

attached model – with the atomic NSA-DEVS structure

and its complete state – and the output values.

NSA-DEVS Simulator.

1 properties:
2 parent
3 tl
4 tn
5 model (NSA-DEVS incl. τ and

total state (s,e))
6 y
7 x∗

8

9 when receive i-message(i,t) at time t
10 tl = t - e
11 tn = tl + ta(s)
12

13 when receive *-message(*,t) at time t
14 e = t - tl
15 y = λ(s,e,x∗)
16

17 send y-message(y,t) to parent
coordinator

18

19 when receive x-message(x,t) at time t
20 if x == ∅

21 e = t - tl
22 s = δ(s,e,x∗)
23 x∗ = ∅

24 if ta(s) == ω
25 tn = ω
26 else if st(ta(s)) == 0
27 tn = t + ta(s)
28 else
29 tn = st(t + ta(s))
30 tl = t;
31 else
32 if not (x∗ == ∅)
33 add events from x to x∗

34 else
35 x∗ = x
36 tn = t + τ

Since the input delay is realized inside the simulator,

input values must be stored temporarily, using the vari-

able x∗. In lines 9–11 the i-message is handled, which

just computes the times of the last and the next events.

The *-message is processed in lines 13–18, where the

elapsed time is calculated, the λ function is executed

and the y-message is sent to the parent coordinator. In

contrast to the PDEVS algorithm λ is now a function of

the total state (s,e) and the input value x∗ that has been

stored before.

The new part - compared to PDEVS - is the way the

x-message is processed, which is shown in lines 19–36.

It discriminates between an internal event (lines 21–30,

x == ∅) and an external event (lines 32-36). In the latter

case it stores all incoming values in x∗ and schedules a

new internal event at the delayed time t + τ .
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All internal events are handled by calling the transi-

tion function δ and computing the time of the next event

using ta in lines 24–29. This calculation deserves spe-

cial attention: It guarantees that “real” time steps (i. e.

non-infinitesimal ones) lead to real valued time values

in order to implement a correct timing and to prohibit

an accumulation of infinitesimal delays.

To better understand the operation of the abstract

simulator, especially how it creates a proper Mealy be-

haviour, we introduce a simple example model N: It

consists of a generator G, which outputs a value t/10

at times t = 1, 2, 3 . . . , a multiplication block M, which

multiplies its input by a factor 3, and a terminator com-

ponent T, which acts as a sink for the incoming values

(cf. Fig. 2).

ta = ω ta = ωta = 1
τ = ε τ = ε

G TM

N

Simple example model.

The messages that are sent between the root coordi-

nator RC, the coordinator CN of coupled model N and

the three simulators SG, SM and ST with the associated

models G, M and T are shown as a sequence diagram

in Fig. 3. Downwards messages are denoted as (msg
type, current time), for the x-messages the input value

is added. Upwards messages are shown as (msg type,

result).
In the initialisation step at t = 0, an i-message is sent

and distributed to the simulators, returning the time t

= 1 of the first internal event to R C. This i s followed

at t = 1 by a *-message sent to the simulator of the

only imminent component G, which generates an out-

put event and sends a y-message with its output 0.1 back

to CN . The coordinator now sends an empty x-message

to SG, which returns the time t = 2 of its next internal

event. Moreover, CN sends a non-empty x-message to

SM , which stores the value internally and schedules a

new internal event according to the input delay time.

The next *-message at t = 1 + ε arrives at the

simulator of the imminent component M, which calls

its λ function and sends the output value 0.3 as a

y-message to its coordinator.

0

RCt
(i,0)

(i,0)
(d,1)

(i,0)
(d, )

(d, 1)

1
(*,1)

(*,1)

(i,0)

(x, ,1)
(d,2)

(d, 1+ )
(d, 1+ )

1+ (*,1+ )
(*,1+ )

(x, ,1+ )

(d, 1+2 )

1+2 (*,1+2 )

(d, )

(d,2)

2

(y,0.1)

(x,0.1,1)

(y,0.3)

(x,0.3,1+ )

(d, )

(d,1+2 )

SG SM ST

(*,1+2 )
(y, )

(x, ,1+2 )
(d, )

CN

Example of message flow.

CN now sends an empty x-message to SM , which

calls its δ and ta functions and returns t = ω to CN . M

is now in a passive state. The rest of the diagram shows

how the output value propagates to ST , which just termi-

nates the incoming events. Since the coordinator stores

all future event times of its children, it finally returns t

= 2 (originally coming from SG) as the time of the next

event, which will repeat the whole cycle.

This example shows precisely, how the two parts of

the x-message algorithm in the simulator module work

together to implement the time delay and the Mealy be-

haviour of a simple Mealy block such as a multiplica-

tion function.
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4 Implementation of the
NSA-DEVS Simulator

The “infinitesimal cloud” of hyperreal numbers around

each real number has a complex structure with lots of

different layers of smallness, e. g. using ε2 or
√

ε . The

purpose of using ∗
R in the formulation of NSA-DEVS

is the possibility to introduce short time intervals with-

out defining their size explicitly, but still being able to

order them.

Therefore times of the form a + bε are sufficient

here, they are stored as two-element vectors. The

implementation of time comparisons and sorting has to

be adapted accordingly.

Since the goal of NSA-DEVS is to provide a good

basis for the concrete modeling of discrete event

systems, an implementation should free the modeler

from the tedious task of defining lots of additional

infinitesimal parameters. Therefore the concrete simu-

lator contains a variable τde f = rε (usually r = 1) that is

used as a default value of τ for all atomic components.

Furthermore the user can still define transitory states

with a transition time ta(s) = 0, which is replaced

automatically by setting ta(s) = rε .

For debugging purposes it would be useful to make

the infinitesimal delays explicitly visible. To this end

the simulator contains a real (i. e. floating point) param-

eter μ , which is 0 normally, but can be set to a value

larger than zero for debugging.

In this case the infinitesimal ε is replaced by μ and

all times are real values computed as

t ′ =

{
(t(1), t(2)) if μ = 0,

(t(1)+μ t(2),0) if μ > 0.

In complex models the value of μ has to be chosen care-

fully: It should be large enough to make the infinitesi-

mal internal processes visible, but small enough to not

induce any changes into the behaviour of the model. As

a result of this extension, the implementation of the x-

message gets more complicated, as can be seen in List-

ing 2.

The special case of passive states in Listing 1 (l. 24f)

is done automatically in line 16 due to the handling of

the value “infinity” in floating-point arithmetic.

1

Implementation of the x-message algorithm.

when receive x-message(x,t) at time t
2 if x == ∅

3 e = [t(1) - tl(1), t(2) - tl(2)]
4 s = δ(s,e,x∗)
5 x∗ = ∅

6

7 tb = ta(s)
8 if tb == [0,0]
9 tb = [0, r]

10 if tb(1) == 0
11 if μ == 0
12 tn = [t(1), t(2) + tb(2)]
13 else
14 tn = [t(1) + μ*tb(2), 0]
15 else
16 tn = [t(1) + tb(1), 0]
17 tl = t;
18 else
19 if not (x∗ == ∅)
20 add events from x to x∗

21 else
22 x∗ = x
23 if μ == 0
24 tn = [t(1) + tau(1), t(2) + tau(2)]
25 else
26 tn = [t(1) + tau(1) + μ*tau(2), 0]

5 Case Study: A Simple
Queue-Server System

To test the operation of the complete NSA-DEVS

formalism – model specification and simulator –, a

prototype has been created in Matlab, which is named

NSA-DEVSforMATLAB.

It contains all features introduced in section 4 and

is implemented in an object-oriented way. To show

its functionality, the singleserver example from [8] has

been chosen as an example for this article; it is shown

as a block diagram in Figure 4.

TW TW TWTW

gen queue termserver

bl

in in inout

blnq

outout

N

Example model singleserver.
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The following atomic models are used for the example:

• Generator: produces entities with an interval of

one second,

• Queue: infinite queue,

• Server: service time 1.5 s,

• Terminator: terminates the entities,

• ToWorkspace (TW): logging data.

The special feature of this model is that the queue

should only send entities to the server when it is not

busy. The server announces this information via port

blocked (bl), which is sent to port bl of the queue.

For functionality, the input delay of the queue must be

greater than the input delay of the server. The input de-

lays of the generator and terminator do not matter. A

special role is played by the four ToWorkspace models,

which are connected to the outport ports out and nq ac-

cording to Fig. 4 and store the output values. They too

– like every atomic model – have an input delay.
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0 5 10 15 20
t
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20

ou
t

Queue

0 5 10 15 20
t

0 5 10 15 20
t

0

2

4

6

8

nq

Queue

0

10

20

ou
t

Server

0 5 10 15 20
t

Simulation results with high input delay at
ToWorkspace.

For the first simulation run, a large infinitesimal in-

put delay was chosen for the ToWorkspace models. The

result can be seen in Figure 5, which displays generator

output (top left), queue output (top right), queue load

(bottom left) and server output (bottom right).

The high input delay has the effect that output

changes, which happen during a series of infinitesi-

mal time intervals, are discarded inside a ToWorkspace

block and only the final value before a finite time step is

shown. This can be seen, for example, at time 10: The

server has finished processing and is idle. Therefore the

queue sends an entity to the server.

At the same time, the generator also outputs an en-

tity and sends it to the queue. In total, the load of the

queue does not change.

However, if one uses a low input delay for the

ToWorkspace models, one sees that the queue load at

time 10 has the values 3 and 4 simultaneously. This

means that the new entity enters the queue first and then

an entity is sent to the server. This behavior is shown in

Figure 6. One could use the debug mode, i. e. set the

parameter μ to a finite value, to dissolve the “spike” at

t=10 into a small step, thereby clearly showing the in-

ternal ordering of the events.
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Simulation results with low input delay at
ToWorkspace.

6 Conclusion

With the specification of an abstract simulator, which

defines the behaviour of a model consisting of atomic

and coupled components, the description of the NSA-

DEVS formalism is now formally complete.

We have shown that NSA-DEVS is able to di-

rectly describe Mealy-like models in the same way as

RPDEVS, but with a much simpler simulator algorithm

similar to the original PDEVS version. In this way

NSA-DEVS combines the best of the two preceding for-

malisms.

Its principle usability has been demonstrated by the

implementation of the simulator and a non-trivial exam-

ple model in Matlab. The notoriously difficult modeling

of concurrent events has been substituted by a clear def-

inition of an ordering based on infinitesimal delays.

The inclusion of a debugging mode further helps to

understand the corresponding difficulties. An interest-

ing side effect is the possibility to easily model systems

with finite time delays.

SNE 33(4) – 12/2023



148

Jammer et al. A Simulator for NSA-DEVS in MATLAB

At first sight, the NSA-DEVS approach seems to

be very similar to the concept of superdense time [10],

where a real time value is augmented by a natural num-

ber to order concurrent events. But the much richer

structure of ∗
R – even of the small part that is used in

the implementation – has profound consequences: On

the practical side, one can use real infinitesimal delays

to squeeze an event between existing ones, without the

need to reorder the complete sequence.

The conceptual difference, however, is the dynamic

structure of NSA-DEVS: The order of concurrent

events is defined by the infinitesimal delays in the

complete model, which add up in a “realistic” way.

While the fixed ordering of superdense time is similar

to the Select function in Classical DEVS [11, p.104],

NSA-DEVS – like PDEVS – allows concurrent events

on the infinitesimal scale and parallelism.

To further examine the practical usefulness of the

NSA-DEVS formalism, one should next study a set of

standard examples with complex event cascades and

real-world case studies. This could help answering

the crucial question, whether an abundance of new

parameters is necessary in real models or if the use of

a default delay is sufficient in many cases. Another

interesting question is, whether one delay for an atomic

model suffices, or if one needs port specific delay

times.

Finally one should address the practical usefulness

of the simulator and its implementation: How does it

perform in comparison to existing PDEVS or RPDEVS

simulators? Suitable benchmarks would address simu-

lation times as well as the number of internal messages

used inside a simulator.

Although the definition of the simulator is a large

step forward, much remains to be done before NSA-

DEVS can be considered a solid approach for practical

discrete event modeling and simulation.
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Abstract. The recently proposed NSA-DEVS formalism
uses infinitesimal time delays to combine the easy imple-
mentation of Mealy components from RPDEVS with the
simple simulator structure of PDEVS in order to make
DEVS a suitable foundation for complex component-
based modeling tasks. To prove its general applicabil-
ity, it is used here to implement a large real-world model
describing a production line that consists of several fur-
naces, lathes and grinders. Using a Matlab implemen-
tation of the simulator algorithm, the model behaviour
is analyzed carefully and it is found that only one of its
over 400 infinitesimal time delay parameters has to be
changed from its default value. This shows the sound-
ness of the basic ideas of NSA-DEVS and its applicability
for real-world examples.

Introduction

A well-known difficulty that often arises when using the

discrete event approach is the occurence of events at the

same time instant. There are two very different reasons

for such a behaviour: The first one is the accidental co-
incidence of events, e. g. when two input events from

different sources arrive at the same time, or when an

event arrives at a component at the exact moment of a

state change. In such cases the exact ordering of these

events inside a concrete simulator is often of no con-

sequence, therefore providing an opportunity for par-

allel execution. The other reason is a chain of events

that is created by an initial event, causing an immediate

(transitory) state change that leads to further events that

spread through the system without delay. Even if all

these events formally appear at the same time instant,

their logical relation enforces a fixed ordering of such a

causal cascade.

In the context of the widely used DEVS formalism

[1] the behaviour of a model and its simulator are de-

fined precisely. Different variants of the formalism pro-

vide specific m echanisms t o fi x th e or der of concur-

rent events, where necessary: Classic DEVS uses a Se-
lect function on the level of coupled components, while

PDEVS introduces a confluent s tate t ransition func-

tion inside an atomic component. The revised PDEVS

formalism (RPDEVS) [2] incorporates a direct Mealy

structure with a generic state transition function and a

refined simulator algorithm [3].

In order to simplify the modeling of causal cas-

cades and the modeling of Mealy behavior, a new

approach named NSA-DEVS (Non-Standard Analysis
DEVS) was proposed in [4]. It is based on the phys-

ical intuition that the transport and the processing of

events always need a certain amount of time, so that

the simulation problems are actually due to oversimpli-

fication. But instead of introducing a plethora of small

delay parameters, NSA-DEVS uses infinitesimal time

delays. Therefore it defines t ime v alues a s elements

of the hyperreals ∗
R, which is a mathematically well-

defined field extension of R containing an infinitesimal
ε > 0 [5]

The definition o f a s imulator [ 6] a nd t he careful

analysis of a set of standard examples [7] have shown

the basic soundness of the new formalism. But to prove

its general applicability, one has to test it with a large

non-trivial example. For this purpose a model of a pro-

duction line will be studied in the following that con-

sists of several furnaces, lathes and grinders. The model

includes the material flow, s everal p rocess controllers

and basic physical properties.
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After a short recapitulation of the NSA-DEVS for-

malism, the model and its implementation in Matlab

will be described, highlighting some special atomic and

coupled components. Finally, the simulation of the

model and careful analysis of the results will clarify the

main question: How many of the delay parameters have

to be changed from their default values, and how diffi-

cult is it to find them? Or, in other words: Is the NSA-

DEVS formalism suitable for real-world applications?

1 The NSA-DEVS Formalism

For the conveniance of the reader the basic definitions

of the NSA-DEVS model specification will be given

here. A more detailed description, the connection with

the PDEVS and RPDEVS formalisms and the definition

of the abstract simulator can be found in [6].

Two types of models are defined in all DEVS vari-

ants: an atomic model that describes the behaviour of

a single component, and a coupled model, which spec-

ifies how models are combined to build a hierarchical

structure. In NSA-DEVS an atomic model is given by

a 7-tuple < X ,S,Y,τ , ta,δ ,λ > with

X set of input ports and values,
S set of states,
Y set of output ports and values,

τ ∈ ∗
R
>0
fin input delay time,

ta : S → ∗
R
>0
fin ∪{ω} time advance function,

δ : Q×X+ → S state transition function,
λ : Q×X+ → Y+ output function.

The input and output sets X , Y contain pairs of ports

and values, where ports are given by names. The sets

X+, Y+ consist of sets of values from X , Y to de-

scribe the simultaneous appearance of input or output

values at different ports. The definition of the transi-

tion function δ and the output function λ contain the

set Q = {(s,e)|s ∈ S, 0 < e ≤ ta(s)} that combines a

state and the elapsed time e since the last transition.

As in RPDEVS, both event types (incoming event or

internal event) lead to a call of λ followed by a change

to a new state according to δ . The time advance func-

tion ta may be infinitesimal or infinite (using ω := 1/ε ,

with ε as infinitesimal value), but it is always > 0,

thereby excluding proper transitory states. The delay

time τ between the arrival of a set of inputs and the call

of λ and δ is generally an infinitesimal, often given by

a default value τde f = ε .

A coupled NSA-DEVS model is defined as in

PDEVS and RPDEVS. It consists of input and output

ports and a set of atomic or coupled models, which are

connected among themselves and to the external ports.

Outputs are transported as usual and a coupled compo-

nent has no additional input delays.

2 A Real-world DEVS Application

The model and its components described in this arti-

cle were developed similar to [8, 9]. The model de-

scribes a production line which includes lathes, grinders

and furnaces (cf. Figure 1). In this production line, in

the first step, the raw parts supplied by a generator are

processed by lathes. After lathing, the components are

thermally treated. This is done first by a furnace for

volume hardening (furnace 1) and then by a furnace for

stress relief annealing (furnace 2). The two furnaces

have no difference in design, but only in their temper-

ature behaviour. The furnaces always process several

parts at the same time, depending on the type of fur-

nace. After heat processing, the components are fin-

ished by grinders. The manufacturing operations are

decoupled via buffers with a maximum capacity of 400

parts. The buffers of the lathes and grinders are located

in the coupled model of the respective manufacturing

operation (cf. Figure 2). The buffers are organized in

a coupled model whereby every single machine has its

own buffer (cf. Figure 3). This model corresponds to

example 4 from [7].

The lathe, grinder and furnace machine models have

all the same internal structure according to [10]. The

structure is divided into a physical model (PM), control

model (CM) and material flow model (MF) (cf. Fig-

ure 4). The PM describes the physical relationships, e.

g. the heat flows, by differential equations. The CM

contains the local machine control, which takes into

account various internal processing steps. In MF, the

internal material flow is modeled in a process-oriented

way, describing the parts as moving entities.

The machine models return the process variables

electrical power, electrical energy and utilization over

time. The buffers deliver information about the current

load and a terminator reports the number of finished

parts. These process variables are used to calculate the

Key Performance Indicator (KPI) variables buffer stock

(pcStock), throughput (thrput), load peak (loadPeak),

utilization (pcUtil), energy per part (eSpec) and produc-

tion time per part (procTime).
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Top level structure of the production line.

Substructure of the grinding component in Fig. 1.

The entire model consists of 391 atomic models and

88 coupled models and is organized in 5 hierarchical

levels.

3 Atomic Components

Using the Matlab-based NSA-DEVS simulator from

[11], an atomic model is implemented as a class, which

defines the transition and the output function as meth-

ods delta(obj,e,x) and lambda(obj,e,x)
and the time advance function as method ta(obj).

The argument obj is the handle (reference) to the ob-

ject, allowing access to its state, e is the time since

the last transition, given as a two-dimensional vector

[a, b] denoting a hyperreal value a+ bε , and x is

a structure, containing the current input as field/value

pairs, where the field is identical to the port n ame. The

constructor always defines the name of the component,

the input delay τ and a debug flag, as well as optional

model parameters.

Substructure of the input queue in Fig. 2.

Since NSA-DEVS retains the mealy-type behaviour

of RPDEVS, standard computational components can

be implemented easily. The main difference to compo-

nents used in a continuous modeling environment is due

to the event-based paradigm applied here: At least for

components with more than one input port, one needs

a state variable for every input port to store incoming

values, because an input is only defined a t t he t ime of

the corresponding input event. Taking this into account,

one can implement a simple adding component by pro-

viding a δ function that just stores the input values, a ta
function that always returns [inf, 0], and a λ func-

tion that returns the sum of the input values, using the

stored values, where necessary.

A standard library of atomic components has been

built for the models described in [7] and the production

line, containing mathematical and routing components,

simple source and sink components and several lo

gis
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Substructure of the furnace components in Fig. 1.

Several of them have been described in [7], among

them an atomic model ToWorkspace that can be

connected to an output port and copies the incoming

values to a global output variable, which can be

analysed after the simulation run. For the modeling of

the furnace a batch component has been added that

combines a given num-ber of incoming entities into

one batch entity, together with a corresponding

unbatch atomic model.

Since some physical variables of the production

line are modelled by differential equations, e. g. the

temper-ature inside a furnace or the electric current in a

grind-ing machine, an integrator component is

needed in-side the NSA-DEVS environment. For this

purpose the Quantized-State-Systems (QSS) method

is used [12], which has already been implemented

inside a Matlab-based DEVS simulator [13].

In addition, a few atomics have been added that are

specific to the production l ine: a special server compo-

nent, controller components for all machine types and

a few conveniance components, which could have been

built as coupled models from atomics in the

standard library. Altogether the production line

model uses 15 types of atomics from the standard

library and 7 from its own library.

4 Coupled Components
In the NSA-DEVS simulator used here, a coupled

model is not implemented as a class, but simply

given by a constructor function, which defines a ll

elements

of the coupled-model specification: its internal atomic

and coupled models and their connections among them-

selves and to the external ports. Furthermore, it assigns

its atomic models to simulator modules and its coupled

models – including the currently defined one – to coor-

dinator modules (cf. [6]).

Especially for large coupled models, the program-

ming of such a constructor function is tedious and error

prone. Therefore a graphical model generator is pro-

vided – similar to the approach in [14] – that creates the

function from a graphical description. For this purpose,

atomic models are represented in Simulink libraries as

blocks that only contain the external ports, using masks

to define their parameters (cf. Figure 5). Coupled mod-

els can then be defined a s s tandard S imulink subsys-

tems consisting entirely of such blocks, subsystems and

external ports. The model generator creates all needed

constructor functions, where the top-level model can be

directly run in the simulator. The corresponding model

of the production line is shown in Figure 1. It consists

of three atomics – a generator, a constant and a

terminator – and coupled systems for the furnaces,

lathes, grinders and intermediate queues.

At the inner hierarchy levels many models look very

much like similar models in continuous simulation en-

vironments like Simulink. A good example is the com-

ponent that computes the furnace temperature using the

simple differential equation

CO
dT
dt

= kA(T −Te)+Pheating −Punload .

It is built exactly like a corresponding Simulink model

(cf. Figure 6).
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Model for the computation of the furnace
temperature.

Though this correspondence may sometimes be

helpful for the definition of suitable atomics and the

construction of coupled models, it is basically super-

ficial. The main difference is, of course, the meaning

of the connecting lines: In continuous simulation en-

vironments a line transports a signal that has always a

value, while in a DEVS environment a value is only

defined at the moment of an input event. This has prac-

tical consequences for the concrete modeling, e. g. for

the question, whether it is possible to connect an output

port directly to several input ports (1:N connection) or

vice versa (N:1 connection).

Using a signal paradigm as in Simulink, the 1:N

direction clearly is possible, distributing the value to

all input ports, while the reverse direction is incorrect,

since in this case the input value is not well defined.

In PDEVS both directions are allowed: Several events

can arrive at the same input port, even simultaneously,

while an output event is copied automatically by the co-

ordinator, when it is distributed to several components.

In NSA-DEVS the situation is different again: While

N:1 connections are possible in principle, the abstract

simulator does not support the simultaneous arrival of

input events at the same port. If this is required – e.

g. for modeling of multi-value logic components [15]

– one has to use corresponding connection atomics ex-

plicitely. The 1:N direction is handled by the coordina-

tor as in PDEVS and will often be used, e. g. to attach

ToWorkspace components directly to a line or to dis-

tribute events transporting simple values. If the data of

an event is interpreted as an entity, as in transactional-

based modeling, it would be better though to include

explicit copy components to make the intention clear.

5 Testing and Running the
Model

We will now try to run the complete production line

model and interpret the simulation results. The main

point of interest here is, how to set all the infinitesimal

parameters. They consist primarily of the 391 input de-

lay times τ . Furthermore one needs 12 additional delay

parameters for the transitory states that are used in the

queue, unbatch and combine atomics, which will be de-

noted as τD. All these values are usually predefined and

set to the value τde f = ε . From the analysis of a few ex-

ample models in [7] the following situations have been

identified, where one has to change some of the param-

eters from their default value:

a.) Input events that appear during the input delay time

of a component, overwrite a previous input value

at the same port, which sometimes is useful, but

more often not. A particular example is a combine

component that serializes concurrent incoming in-

puts: These should be output with a sufficiently

large delay time, so that subsequent components

can process them one after the other.

b.) To make a queue-server combination work, the

blocking signal from the server has to arrive before

a second entity is output by the queue. In standard

situations it is sufficient to set the delay time of the

“transitory” queue state to 2ε , therefore this value

is defined as default in the library queue block.

c.) In loops containing several sequences of compo-

nents the order of concurrent events depends on

the total delay times along different paths. If one

wants to implement a specific ordering, one can

slow down some paths by increasing appropriate

delays.

Since problems due to wrong delay values often lead

to missing entities, a simple test strategy is to insert a

fixed amount of input entities and run the model, un-

til all entities should have reached the output. We start

with default parameters, i. e. all τ and τD values are

set to ε , except the τD values of queue atomics, which

are set to 2ε . The simulation run shows that no enti-

ties reach the final terminator and that the total amount

pcStock of entities in internal queues goes down to

zero, i. e. all entities are lost.

Taking into account the lesson from a.) the culprits

are quickly identified as the unbatch and combine atom-

ics: They release entities in groups with only the default
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delay in between, so that these entities overwrite each

other during the input delay of the following compo-

nent. An obvious solution seems to be to enlarge the

τD values of both unbatch and both combine atomics to

2ε . Running the modified model, the simulator hangs

and must be terminated manually. This can happen,

when the overwriting of inputs happens in a loop with-

out reaching a result.

To localize the problem, one has to look more

closely at the sequence of events using the debugging

possibilities of the simulator. Debugging a complex

discrete-event based application is always a difficult en-

deavour. Therefore one usually starts by reducing the

complexity and looking at test benches for basic sub-

systems. Though this approach has been followed here

to find the usual bugs, it is not sufficient to fix all τ val-

ues, because some important loops only show up in the

complete model.

When setting a debug flag, the simulator outputs the

current simulation time. This shows that the simulation

is stuck in a loop at the first time, when a complete batch

of entities leaves the second furnace (Figure 4) and en-

ters the grinding section (Figure 2). The critical re-

gion therefore seems to be the unbatch atomic inside

furnace 2 and the input_queue component (Fig-

ure 3) inside grinding. Figure 8 shows this model

part with a view of the internal structure of the cou-

pled subsystems. Guessing from previous experience,

one would suspect that the τD parameter of unbatch
is too small. With a value of 10ε for the unbatch com-

ponents in both furnace subsystems, the model works,

no entities are lost, the output is as expected (Figure 7).

Since the problem encountered is typical for the

behaviour of NSA-DEVS, we will show in detail, how

one can use the debugging features of the simulator

to find the concrete source of the error (cf. Figure 8).

First, one adds toWorkspace components inside

input_queue that show the number of entities

in the three queues and the ids of outgoing entities.

Unfortunately, their results are not directly available,

when the simulation run is interrupted manually. Here,

another debugging feature is useful: All atomics have

debug flags, which can be switched on individually to

create outputs of their input and output values and all

state changes during the simulation run. This feature

is used here for the six toWorkspace components

and the distribute3 component at the input of the

input_queue coupling.
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Simulation results showing KPI variables of the
production line model.

Analyzing the debugging outputs of the working

version, which uses τD = 10ε for the unbatch compo-

nent, shows the following behaviour: The first three

entities are distributed to the three queues, leave their

queue immediately and enter the server inside the

corresponding grinding machine. This leads to sev-

eral changes of the port input of distribute3,

which points to the currently shortest queue/server line.

The input events at port are delayed, because the

event cascade has to pass the queue, server, add and

smallestIn atomics. Some of them are overwrit-

ten by the following ones, as can easily be seen in the

debugging log: In such a case the lambda function of

a component is called several times without an inter-

vening call to the delta function. But this only effects

intermediate values here and doesn’t lead to erroneous

behaviour. The next entities (no. 4, 5, . . . ) are stored in

the queues, the associated new port values arrive and

the distribute3 component is ready each time, be-

fore the next entity enters the input_queue, due to

the long τD-delay inside unbatch.
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Critical part of the production line model.

The previously considered version with the smaller

value of τD = 2ε in unbatch shows a completely dif-

ferent sequence of actions: The first two entities are dis-

tributed to queue 1, the third to queue 2, since these en-

tities arrive before the port input could adapt to the

changes.

After the first entities the queues are b locked. This

reduces the delay chain of the port signal, because

the servers inside the grinding machines are no longer

involved, with drastic consequences: The new entities

now arrive at the same time as new port values from

the previous entity. Therefore the old values are over-

written and new lambda calls scheduled, without any

intervening delta calls.

This leads to a loss of all entities, until the last of the

batch arrives. But still the new port numbers come in,

therefore the loop doesn’t end even now.

This behaviour makes clear that τD of unbatch and

similar components must always be large enough so that

the following components and loops are ready, before

the next entity arrives. Taking a larger value does no

harm, but by adding up delays or just trial and error one

finds, t hat u sing 6 ε w orks h ere, b ut 5 ε d oesn’t. Ad-

ditionally, only the unbatch component of the second

furnace has to be adapted, while a default value of 2ε
for the first unbatch works perfectly.

6 Conclusions
The central point of this investigation is the question,

whether one can use NSA-DEVS without tinkering with

a huge number of additional parameter adjustments of

τ for the input delays and τD for the delays of transi-

tory states. The previous discussion has shown that a

consistent introduction of default values is crucial here:

While setting τ = ε and τD = ε seems to work in many

cases, components that emit trains of output values with

infinitesimal t ime d istances, such as q ueue, batch and

combine atomics, need special consideration. Often a

value of τD = 2ε is working and should be predefined

in corresponding library components.

In special situations one has to enlarge these delays,

but concrete values depend on the model details. Us-

ing a larger delay as general default could reduce the

number of cases, where the user has to adapt it, but this

apparent simplification is delusive.

The complex application studied here contains a to-

tal of 403 delay parameters, of which only one param-

eter had to be changed from its default value. This

clearly supports the expectation that modeling with

NSA-DEVS is feasible without drowning in a multitude

of delay parameter adjustments.

In a current PhD project, the production chain de-

scribed in this article is used as an application example,

where it is integrated into the structure of an Experi-

mental Frame [1]. The goal of the experiment is to op-

timize the structure and parameters of the model. As

a first step, a parameter study has been carried out us-

ing the Design of Experiment method. This extended

model works without further adaptations.

Considerations about the correct ordering of simul-

taneous events are not specific to NSA-DEVS, but are

inherent to discrete-event modeling in general. Accord-

ingly, other DEVS variants have different ways, how

to cope with these situations. We see the advantage of

NSA-DEVS in the clear-cut and versatile description of

the ordering using infinitesimal t ime v alues. To make

this work in practical applications, one needs support

by the simulation tools.

The Matlab-based NSA-DEVS simulator used here

supplies several debugging tools ranging from simple

time stamps over debug output of individual atomic

components up to complete output of internal simula-

tor messages.
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The analysis has shown opportunities to improve the

implementation of some components. A prominent ex-

ample is the smallestIn atomic that could be modified to

output new values only, if the previous value changes.

This reduces the number of output events preventing the

infinite loop that has been encountered before. A more

drastic change would be to include only one queue be-

fore the grinding machines and to distribute the parts

after the queue. This would simplify the event structure

and might be a reasonable idea for a production line de-

sign. But the whole point is to provide a tool that works

for all modeling ideas, not to restrict the modeling to

the tool capacities.

An open question from [6, 7] was, whether one

needs port specific input delay times. The answer af-

ter this study is a definitive “no”: In all examples the

default value of the input delay was sufficient for all in-

put ports to get a reasonable model. A change of an

input delay would be needed only to guarantee a cer-

tain order of unrelated input events. Besides, one could

always resort to the workaround of inserting a simple

delay component – e. g. a gain with factor 1 – before a

specific input port.

This concludes the series of papers [4, 6, 7] that in-

vestigated the ideas behind NSA-DEVS as a founda-

tion for component-based DEVS modeling. Building

on RPDEVS [2], which made Mealy components sim-

ple and reliable, the NSA-DEVS approach was invented

to add the robust modeling of causal event cascades.

The definition of a simple abstract simulator, the careful

analysis of standard examples and the implementation

of a complex application have shown the soundness of

its underlying ideas. The Matlab simulator and model

base will be continually extended and provided freely

from [11] to make NSA-DEVS-based modeling avail-

able for real-world applications.
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Abstract. Driver fatigue is a risk factor for road crashes.
Fit for duty technologies could play a pivotal role in coun-
tering these crashes. Heart rate variability (HRV) and the
pulse wave shape are influenced by the autonomic ner-
vous system and are therefore affected by fatigue. This
work focusses on modelling their relationship with fa-
tigue and is basedondata recorded in a simulateddriving
study. Six different multivariate linear regression mod-
els, using either stepwise variable selection or principal
component analysis, are presented in this study. To ac-
count for differences in physiology, individual participant
baselines for HRV and pulse wave parameters are intro-
duced. Stepwise regression using any kind of baseline
yields the most promising results. The most promising
predictors are the ratio LF

HF between low and high fre-
quency components of HRV and heart rate. Finally, a
stepwise regression model with a baseline, which has an
adjusted R2 statistic of 0.17, is proposed for further use.
Nevertheless, further research with an extended dataset
is necessary, incorporating a more diverse participant
group and a higher number of recordings from severely
sleepy drivers.

Introduction
Around 7% of European road crashes and around 13%

crash-related injuries can be linked to driver fatigue

[1]. A fit-for-duty assessment system, which can alert

a driver of possible fatigue, has the potential to reduce

the number of crashes, injuries and deaths on Europe’s

roads. Fit for duty assessments are typically based on

ocular parameters [15, 16] or cognitive performance

[17], and often evaluate the driver response to some sort

of stimulus [18].

This work aims to develop a predictive model to es-

timate fatigue from cardiovascular parameters, derived

from heart rate variability (HRV) and pulse wave shape.

The model is meant for use in the field of commer-

cial driving within the EU-funded PANACEA project,

which stands for “practical and effective tools to moni-

tor and assess commercial drivers’ fitness to drive”, and

aims to take various driving impairments, such as alco-

hol or stress, into account.

1 Physiologial Background
1.1 Heart Rate Variability

The autonomous nervous system (ANS), which keeps

the body in homoeostasis, a state of stable physical

conditions, is constantly monitoring and correcting the

heart rate (HR) to the needed pace via the sinus node.

This means certain fluctuations in the time between two

successive heartbeats are in fact healthy.

SNE 33(4) – 12/2023



158

Bachler et al. Cardiovascular Parameters and Driver Fatigue - Statistical Modelling

This variance indicates that our bodies can quickly

adapt to environmental change or stressors and shows a

degree of resilience. This fluctuation in t ime between

successive heartbeats is termed the heart rate variability

(HRV). [3]

Parameters derived from HRV can be extracted from

Electrocardiography (ECG) and are usually separated in

time and frequency domain parameters. An important

measure for most time-domain HRV parameters is the

normal-to-normal interval (NNI), which is a time se-

ries describing the time differences between successive

normal heartbeats. After transforming NNI to the fre-

quency domain, the power in certain frequency bands

are widely used parameters. A description of used time

and frequency domain parameters is given in table 1.

Overview of time (1-4) and frequency (5-10) domain
HRV parameters derived from ECG data. Units are
given in parenthesis. [14]

HRV Parameter Description

1 mean HR
(bpm)

Mean haert rate (HR) throughout a

recording

2 SDNN
(ms)

Standard deviation of NNIs

(i.e. the square root of variance of

NNIs)

3 RMSSD
(ms)

Root mean square of successive dif-

ferences of NNIs

4 pNN50
(%)

Percentage of successive NNIs, that

differ by more than 50 ms

5 TP (ms2) Total power in all frequency bands

6 LF (ms2) Power in the low frequency band

(0.04−0.15 Hz)

7 LFnorm (-) LF power divided by absolute

power of LF+HF

8 HF (ms2) Power in the high frequency band

(0.15−0.4 Hz)

9 HFnorm (-) HF power divided by absolute

power of LF+HF

10 LF
HF ratio (-) Ratio of low frequency and high

frequency power

As the body prepares for sleep, the heart rate de-

creases, allowing for more variability between beats,

and the parasympathetic branch of the ANS becomes

dominant while activity in the sympathetic branch of

the ANS decreases [4]. Thus, we hypothesize that as

fatigue arises, SDNN and HF should increase due to

higher parasympathetic activity, whereas LF, heart rate

and the LF
HF ratio, which is said to describe the balance

between the branches of the ANS, should decrease due

Even though HRV parameters, especially LF
HF ratio,

are appealing parameters for fatigue assessment due

to their physiological interpretation, they tend to show

some controversy. There are inconsistencies in findings

for all HRV parameters in connection to fatigue [19].

Concerning the frequency-domain HRV parameters, it

should be noted that multiple different procedures are

used to estimate the power spectrum and the applied

method is often not clarified. Due to various anatomical

factors, such as age or sex, there can also be large differ-

ences between individuals in HRV parameters [9, 10].

1.2 Pulse Wave

The ejection of blood from the heart causes a pressure

wave that is partly reflected as it propagates through the

arterial system. The pulse wave is the superposition of

this pressure pulse and its reflections. Pulse arrival time

(PAT) is the time from a point in the ECG, usually the

prominent R-peak, to the detection of the pulse wave

in a certain location of the body, in this case the finger.

The pulse wave can be measured using photoplethys-

mography (PPG). [11]

Even though pulse waves are dependent on measure-

ment location and individual factors, they mostly have

similar main features that can be extracted as parame-

ters. A general depiction of the pulse wave is shown in

figure 1. Characteristic points of the pulse wave include

the onset (PO, the point before blood pressure begins to

rise), diastolic blood pressure (Pdia, the minimal blood

pressure), systolic blood pressure (Psys, the first peak of

blood pressure), the dicrotic wave amplitude (Pdwa, the

second peak of the wave) and the dicrotic notch (Pnotch,

the through between first and second peak of the wave)

[26]. The total pulse duration (TPD) tT is measured as

the time from wave onset to the onset of the next wave.

Descriptions of the parameters derived from the pulse

wave are given in table 2.

It has been shown, that sleep deprivation affects

blood pressure and therefore also the pulse wave [20].

Nevertheless, only one study was found that links

changes in the pulse wave shape parameters to fatigue.

An evaluation of sleepiness while flying, rather than

driving, showed a significant increase in PAT, systolic

time and diastolic time, which is the time from wave

onset PO to the diastolic peak Pdwa [12].
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Overview of pulse wave parameters derived from
PPG and ECG data. [25, 27]

Pulse Wave
Parameter

Description

tT Total pulse duration (TPD): time from wave onset

PO to the onset of the next wave

tsys Time from wave onset to systolic pressure Psys

tsys_rel Time from wave onset to systolic pressure Psys,

relative to the TPD tT

tnotch Time from wave onset to dicrotic notch Pnotch

tnotch_rel Time from wave onset to dicrotic notch Pnotch,

relative to the TPD tT

tdwa_rel Time from wave onset to dicrotic wave amplitude

Pdwa, relative to the TPD tT

Pdwa_sys Dicrotic wave amplitude relative to systolic blood

pressure:
Pdwa
Psys

Pnotch_sys Amplitude of the dicrotic notch relative to sys-

tolic blood pressure:
Pnotch
Psys

Pnotch_dwa Amplitude of the dicrotic notch relative to di-

crotic wave amplitude:
Pnotch
Pdwa

PAT Pulse arrival time

2 Methods

2.1 Data Collection and Processing

The data collection was conducted by the Swedish Na-

tional Road and Transport Research Institute (VTI) in

Linköping, Sweden. In total, 30 male professional

drivers, who did not work nights and who are free

of motion sickness and sleep disorders, completed six

driving simulation tasks each. While the primary fo-

cus of the pilot trial was to examine effects of social

drinking in the evening (target blood alcohol content

(BAC) of 0.5�) on next-day driving performance, the

secondary focus was on fatigue data and modelling.

Driving tasks took approximately 35 minutes and

were completed in a driving simulator in three different

conditions: a control condition (C), where participants

were under no known influence, a condition for the ef-

fect of alcohol (condition A), where drivers were in-

toxicated for half the measurements, and measurements

conducted the day after drinking (condition B). Details

concerning the measurement conditions are shown in

table 3. Figure 2 shows the driving simulator and ex-

amples of scenery shown during the driving tasks.

Fatigue is measured using the subjective nine-point

Karolinska Sleepiness Scale (KSS), depicted in table 4.

The image shows all characteristic points of the
pulse wave (labelled in green) and all significant
time durations (labelled in blue) used in this study.

Summary of basic parameters for the different
conditions in which each participant completed the
simulated driving exercises. The blood alcohol
content is abrreviated by BAC.

Condition Purpose Influence Time of Day

A Alcohol BAC 0.3�- 0.7�
for half the drives

3 p.m. - 9.30 p.m

B Day After Residual Alcohol 7 a.m. - 1 p.m

C Control None 7 a.m. - 1 p.m

Left: The driving simulator used in the data
collection. Right: Two examples of the simulated
driving environment in rural (top) and urban
(bottom) surroundings.
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Drivers were asked to rate their level of fatigue on

the KSS before and after driving. Using an objective

ground truth of sleepiness would have been favourable,

but available objective technologies suffer from intra-

and interindividual differences and small effect sizes,

whereas KSS has been found to be the measure of driver

sleepiness least affected by inter-individual variations

[2].

AIT Austrian Institute of Technology’s proprietary

device, the SmartPWA, was used to record ECG and

PPG signals both before and after driving. Measure-

ments while driving are not possible, since the device

must be held with both hands for recording signals. A

detailed description of the device can be found in Meng-

den et al. [13]. In accordance with the standards of

measurement for heart rate variability [14], at least two

minutes of ECG and PPG data were recorded for each

measurement in this trial.

For HRV measures in the frequency domain, the se-

ries of NNIs is transformed using the Lomb-Scargle-

periodogram without interpolation [22, 23]. From this

periodogram, the power in the low frequency band

(0.04 - 0.15 Hz), the power in the high frequency band

(0.15 - 0.04 Hz) as well as the total power are derived

using the integral in the respective intervals. Data pro-

cessing and modelling were conducted in MATLAB

R2022b (The MathWorks Inc., Natick, USA).

Levels of the Karolinska Sleepiness Scale (KSS) [2]

Level Description

1 Extremely alert

2 Very alert

3 Alert

4 Rather alert

5 Neither alert nor sleepy

6 Some signs of sleepiness

7 Sleepy, but no effort to keep awake

8 Sleepy, some effort to keep awake

9 Very sleepy, great effort to keep awake, fighting sleep

2.2 Modelling

In addition to the ECG and PPG parameters already

described, age, height, and weight were also included

as predictors in the regression models. The number

of parameters is too large to sensibly include all in

one predictive model, which raises the question, which

parameters attribute most to accurate prediction of fa-

tigue. MATLAB’s predefined functions for dimension

reduction using principal component analysis (PCA)

and stepwise variable selection, respectively, were used

to determine the most valuable predictors and generate

multivariate linear regression models.

Since alcohol is a known confounder of HRV [21],

all models using no baseline were trained on data from

condition C and, due to lack of more uninfluenced data,

tested on data from condition A and B.

The individual differences in HRV and pulse wave

parameters used as predictors in the generated regres-

sion models can have a huge effect on the generality of

these models. Therefore, two different versions of an

individual baseline were pursued: a fixed baseline (F)

and a dynamic baseline (D).

Fixed Baseline (F). For each individual, the first

measurement taken in control condition C, before driv-

ing, is used as the baseline. The training data then con-

sists of the differences between any other measurement

and the allocated participant baseline.

However, using recordings from condition C as a

baseline, does not leave enough condition C recordings

to train a model. Instead, for each participant, the two

measurements for a given recording time (before or af-

ter driving) and a given condition (A,B or C) are ran-

domly divided between the test and training data set.

Dynamic Baseline (D). The measurement before

driving serves as a baseline in values for each partici-

pant for this particular drive. This baseline is dynamic

in the sense that for each driving simulation a new par-

ticipant baseline is set. The model is trained on the

differences between before and after driving for data

measured in condition C. Hence, the focus lies on the

change in parameters throughout a simulated drive. The

model is tested on the differences of parameters be-

tween before and after driving for data measured in con-

ditions A and B.

Modelling Approaches. All generated models use

combinations of the HRV and pulse wave parameters,

presented in tables 1 and 2, as well as metadata (height,

weight or age) to predict the level of fatigue on the KSS.

Six different approaches, depicted in figure 3, were

pursued when generating multivariate linear regression

models.
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N

SLNC PCNS

F

SLFS

D

SLDC SLDS PCDS

no baseline

stepwise
lin. model PCA

fixed
baseline

stepwise
lin. model

dynamic
baseline

combined
stepwise
lin. model

single
stepwise
lin. model PCA

The tree represents an overview of different choices of baselines and modelling approaches for generating a model. A
model can use no baseline (N), a fixed baseline (F) or a dynamic baseline (D). Applied methods can be principal
component analysis (PC-) or stepwise linear regression (SL-). The subscript C indicates that the model is a combination
of two models, where HRV and pulse wave data were modelled separately, while S indicates that one single model was
generated from all data.

Each approach consists of a choice of baseline (fixed

(-F), dynamic (-D) or none (-N)) and a choice of mod-

elling method (PCA (PC-) or stepwise variable selec-

tion (SL-)). The models are given a three-letter name,

where the first two indicate the chosen method while

the last indicates the choice of baseline.

In some cases, HRV and pulse wave data are mod-

elled separately, since, due to lack of signal quality,

there are many missing values in pulse wave param-

eters. Generating separate models for the parameter

groups allows the use of a larger training set for the

HRV component of the model.

The final prediction for such models, which are in

fact a combination of two models, is set as the average

of both contributing predictions.

Models that are actually a combination of two sep-

arate models for HRV and pulse wave data are marked

with a subscript C, while those generated as a single

model from all data simultaneously are marked with a

subscript S.

Evaluation. The models are evaluated using the F-

test, which determines the statistical significance of the

relationship between a group of predictors and the re-

sponse. The relationship given by a model is signif-

icant, if the p-value determined by the F-test is be-

low the level of significance α = 0.05. Residual plots

are used to detect systematic error or non-normality of

errors and residuals are tested for normality using the

Anderson-Darling test.

Models are also compared to each other with respect

to quality of fit, using the adjusted R2 statistic as well

as root mean square error (RMSE), based on the differ-

ence between measured and predicted KSS, on test and

training data as main indicators of goodness of fit.

3 Results
The median age of the drivers was 40 years with an in-

terquartile range (IQR) of 12 years. The participants

had a median height of 183 cm with an IQR of 9 cm.

The median weight of drivers was 91 kg with an IQR of

21 kg.

Table 5 shows a summary of model results. The re-

sults of the F-test indicate that all but one model are

statistically significant. The model PCNS is not statis-

tically significant. While the model SLDS has an ad-

justed R2 statistic of 0.6, all other models are below

0.25. The root mean square error of the models ranges

from 0.76 to 1.26 for training data. For test data RMSE

is between 1.3 and 1.75.

The tables 6 and 7 show the RMSE for data from

each of the conditions separately. In general, the pre-

diction error seems to be highest in condition B, the day

after drinking, while it is lowest on data from condition

C, on which most models were trained.

Graphical residual analysis using residual plots

did not reveal any inappropriate model choices or

correlated errors.
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he table shows key characteristics of quality of fit,
the adjusted R2 statistic and the root mean square
error (RMSE) on both training and test data on the
KSS scale (1-9), for each of the models discussed.
Additionally, the p-value of the F-test versus a
constant model is given for each of the models.

Model Adjusted
R2

Training
RMSE

Test
RMSE

F-Test

SLNC 0.21 1.11 1.55 pHRV = 0.0053

pPW = 0.0274

SLDC 0.17 1.19 1.41 pHRV = 0.0035

pPW = 0.0143

SLDS 0.60 0.76 1.75 p = 0.0002

SLFS 0.14 1.14 1.3 p = 0.0037

PCNS 0.07 1.26 1.55 p = 0.4924

PCDS 0.25 1.19 1.52 p = 0.0235

RMSE for KSS estimates on the scale of 1 to 9 of
SLNC, SLFS and PCNS models. The RMSE is given for
each data category separately. The training data set
of SLNC and PCNS is marked by an asterisk.

Data SLNC SLFS PCNS

C (before)∗ 1.04 - 1.26

C (after) 1.21 1.08 1.23

B (before) 1.68 1.35 1.49

B (after) 1.78 1.52 1.65

A (before) 1.35 1.03 1.35

A (after) 1.61 1.08 1.69

RMSE for KSS estimates on the scale of 1 to 9 of
models using dynamic baselines, i.e. SLD and PCDS

models. The RMSE is given for each data category
separately. The training data set is marked by an
asterisk.

Data SLDC SLDS PCDS

C∗ 1.19 0.76 1.19

B 1.52 1.48 1.68

A 1.30 1.97 1.36

While the residuals of the models SLNC, SLDC,

SLDS and the principal component models PCNS and

PCDS passed the Anderson-Darling test of normality,

those of the model SLFS did not.

Table 8 gives an overview of the variables included

in each of the generated stepwise linear models as well

as their estimated coefficient values.

The most important variables in the generated re-

gression models seem to be age and heart rate, which

are both selected in three models (with a statistical sig-

nificant relationship in two of them), as well as the HF
LF -

ratio for HRV data, which is selected in all models and

is significant in two of these. Concerning pulse wave

parameters, systolic time and total pulse duration are

chosen with a statistically significant coefficient com-

paratively often: in two and three models, respectively.

This table shows an overview of the variables chosen
by each stepwise regression model as well as their
computed coefficients. An asterisk indicates
statistical significance at the level α = 0.05 in the
corresponding model. Fields of coefficients, that
were not selected, are shaded in dark grey, while
those that were not statistically significant are
shaded in light grey.

Variable SLNC SLDC SLDS SLFS

intercept −1.5800 0.3155 −7.2307 4.8773

age −0.0915∗ 0.0379 −0.0378∗

height −0.0413 0.0453 0.318

weight −0.0298

mean HR −0.0688∗ −0.0966∗ −0.0736

LF 418.15 −1175.50∗ −394.46

HF 5567.10∗

LF
HF ratio 0.1858 0.2751∗ 1.0477∗ −0.1314

RMSSD

SDNN −0.0967∗

pNN50 −2.282 −13.4670∗

TP 358.86 325.96∗

LFnorm 4.3528∗

HFnorm

tT 0.0206∗ −0.0093∗

tnotch

tsys_rel 65.2190∗

tnotch_rel 22.762∗

tdwa_rel 8.4928

tsys −0.0690∗ −0.0160∗ −0.0237∗

Pdwa_sys 29.6110 5.3830 6.3948∗

Pnotch_sys −32.1640

Pnotch_dwa 18.7490

PAT −0.0142 0.0598∗

The principal component model with no baseline

(PCNS) uses eight of the 23 computed principal com-

ponents, none of which are statistically significant.
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The model PCDS uses five principal components,

two of which have a significant relationship to the re-

sponse.

The model SLDC is described in greater detail, since

this is later chosen as the most favourable model. Pre-

dictions are calculated using the formula

KSSest =
(KSSHRV +KSSPW)

2

where the KSS values from HRV and PW data are esti-

mated by

KSSHRV = KHRV + c1
LF

HF

KSSPW = KPW + c2tdwp_rel + c3tsys + c4Pdwp_sys + c5PAT.

KHRV and KPW denote the estimated intercept included

in the corresponding models while the coefficients are

referred to as c j, j = 1, . . . ,5. Figure 4 shows the es-

timated KSS values, fitted by the model SLDC, plotted

against the corresponding measured KSS values.

4 Discussion

This work aims to predict fatigue on the KSS from HRV

and pulse wave parameters. Four different stepwise lin-

ear regression models, the coefficients of which can be

found in table 8, and two models using principal com-

ponent analysis were generated. Using linear regres-

sion resulted in fatigue predictions that were on average

about 1.5 KSS units wrong. Principal component anal-

ysis and regression did not lead to improvement com-

pared to stepwise linear regression models, especially

with respect to statistical significance. This could be

due to the complexity of the cardiovascular system and

the multitude of confounding factors, many of which

could not be included in the regression data. Due to

the large individual differences in HRV and pulse wave

data, using a baseline improved model results.

While many studies investigate the connection be-

tween single HRV measures and fatigue [4, 5, 8, 19],

only one study was found, that evaluates this relation-

ship for pulse wave shape parameters [12]. In these pre-

vious studies HRV and pulse wave shape parameters are

used for continuous fatigue monitoring during driving.

As this study attempts to assess driver sleepiness prior

to driving and no previous research on predictive regres-

sion models for fatigue based on cardiovascular param-

eters was found, the results of this study are difficult to

put into context.

The variables age, heart rate and LF
HF -ratio are often

included as variables, while also being statistically sig-

nificant in the stepwise regression models of this work.

They are therefore considered to be the most important

HRV parameters connected to fatigue. Similarly, when

looking at the results of this study, systolic time and

total pulse duration are very important pulse wave pa-

rameters for fatigue assessment.

These parameters are also considered to be impor-

tant variables in previous studies, however, for the sys-

tolic time and frequency-domain HRV measures, the

coefficient signs are mostly the opposite of what could

have been expected from previous research [6, 8, 12].

In comparison to literature, the influence of height and

weight is smaller than expected [10]. They are not

chosen with a statistically significant coefficient in any

model. RMSSD is not included at all and therefore

seems to be of low importance. PAT is chosen with

a statistically significant coefficient in one model, but

seems to be less sensitive to changes in fatigue than ex-

pected.

Both, previous studies and the stepwise regression

models of this study suggest that the LF
HF ratio is of ut-

most importance for fatigue prediction, but contradic-

tory results pose challenges in its use as a predictor.

While most studies, such as [6], show a negative trend

for rising sleepiness, some research, such as Rodriguez-

Ibañez et al. [7], shows the opposite or, as in Abtahi et

al. [8], finds no significant change. In this work the
LF
HF ratio is included significantly with a positive trend

in two models, SLDS and SLDC. Contradictory results

could be caused by confounding factors or, as suggested

in the standards of measurement for HRV [14], could

be the result of varying methods in use to obtain the

frequency-domain measures. Since most studies do not

clarify the applied method, the exact influence can not

be determined. Alternatively, increased stress due to

fighting fatigue, when driving on real roads compared

to a simulated environment, could increase sympathetic

activity and therefore affect HRV and limit the compa-

rability of studies [8].

For the model SLDS the heart rate and HF power

are included as expected [8]. The models SLFS, SLNC

and SLDC each include one variable as the literature

review would suggest (TP, HR and PAT, respectively)

[8, 12].
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KSS values fitted by the model SLDC are plotted against the corresponding measured KSS values in each group. The
black dotted line indicates the line of equality between measures and estimates.

Even though all residual plots look acceptable, the

residuals of the model SLFS failed the test of normality,

indicating possible systematic error. Therefore, its re-

sults should be used with caution. The model SLDS on

the other hand, shows signs of overfitting. The adjusted

R2 statistic indicates a higher portion of explained vari-

ance than could be expected in such a complex sys-

tem and especially the high difference between test and

training RMSE causes doubts, whether this is a suitable

choice.

The model SLFS has an acceptable R2 value and re-

tains a higher generality than other models presented in

this study. However, the better quality of fit of SLFS

must be seen in the context of test and training data.

While all other models were trained on condition C and

tested on conditions A and B, both training and test data

sets of the SLFS model contained measurements from

all conditions.

In the context of predictions, low p-values and

RMSE are essential. Therefore, even though SLNC has

low training error and high adjusted R2, it may not be

suited for the intended use, since only 6 out of 15 vari-

able coefficients are statistically significant. The com-

bination of all variables is considered to be significant

at the level α = 0.05, but the p-value is higher than that

achieved by other models.

The model SLDC seems to strike a balance, where

a good amount of variance is explained through a small

number of variables, while statistical significance, pre-

diction error and the normality of residuals are all ac-

ceptable. Nevertheless, the results should be interpreted

with caution, since this model includes some variables,

most notably the LF
HF ratio and systolic time, in a differ-

ent manner, i.e. opposite sign of the coefficient, than

the majority of previous research.

One limitation of this work is that the data used for

the purpose of generating the regression models is not

perfectly suited to the task. Considering the fact that

predicting high KSS values is of most interest in the

context of driving, it is unfortunate, that over 90% of all

recorded KSS values are below 7.

During the entire trial, no participant was tired

enough to evaluate themselves at the highest KSS value

of 9. This fact does not allow to generate or even test a

model, that predicts fatigue accurately at the top end of

the scale, thus a generally valid model.

Additionally, the training data set is rather small,

after removing data influenced by alcohol. Therefore,

no data without known influences can be reserved for

model testing, which makes the interpretation of re-

sults difficult. Multiple factors, such as age, sex, shift

work or certain medical conditions can affect HRV and

pulse wave parameters and should also be accounted for

[14, 24].

5 Conclusion

In the context of quantifying the relationship between

fatigue and physiological parameters of the cardiovas-

cular system, which are sensitive to changes in fatigue

due to their connection to the autonomic nervous

system, the presented linear regression models using

stepwise variable selection produce promising results.

Even with the restriction of a small data set with

avoidable confounding factors, this work shows that

the prediction of fatigue on the KSS scale through a

regression model using cardiovascular parameters is

not only feasible in theory, but also in practice.
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Of course, the methods and models presented and

discussed in this work need to be refined, especially by

incorporating larger and more heterogeneous data sets,

before fatigue assessment for commercial drivers can be

used at a large scale. The dataset included only healthy,

male participants, mainly between the ages of 30 and

50. Even though the homogeneous participant group

has the advantage that much variability can be avoided

at such an early stage, it also means the models must

be generalised and re-evaluated to be applicable to the

entire adult population.
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Abstract.  Reinforcement Learning (RL) is an optimization 
method characterized by two interacting entities, the 
agent and the environment. The environment is a Markov 
Decision Process (MDP). The goal of RL is to learn how an 
agent should act to achieve a maximum cumulative re-
ward in the long-term. In discrete-event simulation (DES), 
the dynamic behavior of a system is represented in a 
model (DESM) that is executed via a simulator. The con-
cept of Experimental Frame (EF) provides a structural ap-
proach to separating the DESM into the Model Under 
Study (MUS) and its experimental context. Here, we ex-
plore the integration of a discrete event MUS as an envi-
ronment for RL using the concept of EF. After discussing 
the methodological framework, a case study using 
MATLAB/Simulink and the SimEvents blockset is consid-
ered. The case study starts with an introduction of the dis-
crete-event MUS for which a control strategy shall be de-
veloped. The MUS is reused in three experiments using 
specific EFs. First, an EF for the design of a heuristic con-
trol strategy with ordinary simulation runs is presented. 
Then, based on the methodological approach, specifics of 
the EF are considered when using a self-implemented Q-
agent and the RL toolbox of MATLAB/Simulink. 

Introduction 
In modeling and simulation (M&S), a model describes 
the dynamic behaviour of a real or virtual system. The 
execution of the model is performed using a simulator. In 
the versatile use of a model, it should be developed inde-
pendently from the context of use.  

 

The reference to a concrete experiment can be 
mapped by an Experimental Frame (EF).  

An EF specifies the conditions under which a system 
is observed or a model experimented with (Zeigler [12], 
Zeigler et al. [14], Traore and Muzy [11]). The model 
used is called the Model under Study (MUS). Depending 
on the EF, the same MUS can be used in different exper-
imental contexts, such as a parameter study, sensitivity 
analysis, optimization, etc. The EF and MUS form the 
simulation model (SM). Discrete event simulation mod-
els (DESM) are characterized by a finite number of states 
over a continuous time base. 

The EF implements the interface for a Simulation-
Based Experiment (SBE). Inspired by Breitenecker’s [1] 
approach to structuring SBEs, Pawletta et al. [5] and 
Schmidt [7] introduced the concept of Simulation 
Method (SimMeth) and Experiment Method (ExpMeth). 
The SimMeth controls the execution of the simulation 
runs via a simulator and ExpMeths are arbitrary numeri-
cal methods. ExpMeths are used for pre- and post-pro-
cessing or to control the SimMeth, such as in simulation-
based optimization experiments (Carson and Maria [2]; 
Schmidt [7]). 

Reinforcement Learning (RL) (Sutton and Barto [8]) 
in combination with a dynamic system simulation can be 
considered as a SBE. However, RL is an optimization 
method for Markov Decision Processes (MDPs). The 
MDP is modeled as an environment and an agent acts as 
a controller. The goal is to learn how the agent should act 
to achieve a maximum cumulative reward in the long-
term.  

In contrast to a DESM, an MDP is a discrete time pro-
cess and the time base is only used for the sequential or-
dering of states. Not all states of the MUS are usually of 
interest to the RL. Accordingly, the states of the MUS 
must be converted into MDP-compliant states.  
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Due to the methodological differences, the combina-

tion of the two methods, RL and discrete event simula-
tion, often lead in practice to implementations that are dif-
ficult to maintain and MUS that are not generally usable. 

Here, the practical integration of both methods using 
the concept of EF is explored by means of a case study 
and using MATLAB/Simulink as well as the SimEvents 
blockset (MathWorks [9]). We start with some basics to 
SBEs, EF, RL and the usage of RL in a SBE. Then, the 
MUS is introduced for which a control strategy is devel-
oped. To present the reusability of the MUS in the con-
text of different experiments using specific EFs, we start 
with the design of a heuristic controller. This is followed 
by two experiments on RL-based controller design. 

This work is based on Pawletta and Bartelt [6]. More 
details on the theoretical background and related work is 
provided there. 

1 Basics  
Based on Pawletta and Bartelt [6], we briefly review the 
basics of structuring SBEs, the RL method, and the use 
of RL as a method of an SBE. 

1.1 Structuring Simulation-Based 
Experiments 

Schmidt [7] divides SBEs into three classes. We consider 
only the first two classes. The execution of one or more 
simulation runs by a SimMeth constitutes a simple SBE, 
if the SimMeth is invoked directly by the user or a super-
visory Experiment Control (EC). An EC defines the goals 
and steps of an experiment and automates the experiment 
execution.  

In a complex SBE, the SimMeth is controlled by an 
ExpMeth, for example, by a numerical optimization 
method. Figure 1 shows the basic structure of a complex 
SBE. Both the SimMeth and ExpMeth define process pa-
rameters (PExM, PSnM ). 

The EF separates the MUS from a specific context of 
use to improve the reusability of the MUS. Formally, Zei-
gler [13] defines the function of an EF with the tuple. 

 , , , , , ,  (1) 

T represents the time base, I and O the set of input and 
output variables of the MUS (equivalent to IMUS and OMUS 
in Figure 1), C the set of run control variables, I the set 
of admissible input segments, C the set of admissible 
control segments, and SU the set of summary mappings. 
Set I refers to the input variables of the MUS and to the 
input/output relationships in the EF.  

 
      Figure 1. Basic structure of a complex SBE. 

 

 
Figure 2. Basic structure of a DESM with MUS and EF.  

An EF does not necessarily have to contain all 
three components and the coupling relation-
ships are not fixed. 

 

Set C defines the experimental constraints. The experi-
ment objectives are mapped to interest variables. Set SU 
defines the determination of the interest variables based 
on the MUS outputs. The interest variables are typical 
output variables of the EF. The implementation of an EF 
is done using three types of components, as illustrated in 
Figure 2 (Zeigler [13]; Zeigler et al. [14]). The generator 
(Gen) initializes the configurable parameters of the MUS 
and calculates the input segments for the MUS which can 
also be inputs of the Acceptor (Acc) or Transducer 
(Trans). The Acc defines the admissible control segments 
and monitors their compliance. The output of the Acc is 
run control information. The Trans calculates the SU. 

1.2 The Method of Reinforcement Learning  
According to Sutton and Barto [8], RL focuses on the se-
quential decision-making by an agent that interacts with 
a real or virtual environment. The agent is trained by its 
interactions with the environment. The goal of RL is to 
learn a behavioral strategy :    for the agent that 
assigns an action    to each state    of the environ-
ment.  
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Figure 3. Basic RL framework. 

Thus, the agent can act as a controller for the environ-
ment. Using RL, a distinction is made between the train-
ing and deployment of an agent, although the agent can 
continue learning during deployment. The basic RL 
framework is shown in Figure 3. 

In model-free RL, the agent only knows the allowed 
action set  at the start of training. The states    of the 
environment are unknown to the agent. When an action 

t   takes effect, the environment determines its next 
state t+1 as well as a reward value rt+1 using a state tran-
sition model TM: S x A S and reward model RM: S x A 

R. The next state and the reward value are sent back to 
the agent. The index t marks a sequence of states in the 
sense of a MDP. Through iterative interactions with the 
environment, the agent obtains information about possi-
ble states of the environment and the benefits of actions, 
gradually improving its behavioral strategy . A variety 
of different learning strategies have been developed for 
RL agents such as Q-learning, Deep Q Networks etc. 

We briefly consider Q-learning that uses formula (2) 
to learn a strategy  using a table function called the Q-
matrix. A matrix element ,  represents the esti-
mated benefit of an action  when it is performed in the 
state  of the environment. The updated ,  value 
of the current state/action tuple ,  is calculated from 
the previous ,  value, the currently received re-
ward , and the maximum Q-value (max , ) 

of all possible actions in the currently received next state 
. The variables  and  are hyperparameters, i.e. they 

must be defined before training, but can still be adjusted 
during training. 

 
  

max , ,          2  

The training takes place in independent episodes. Each 
episode starts in an initial state  of the environment and 
ends when a target state  or abort state  is 
reached. At the beginning of the training, the agent se-
lects an action  randomly. This is called explora-
tion. As the learning process progresses, the agent in-
creasingly uses the knowledge it has acquired to select an 
action which is called exploitation.  

The ratio  of exploration to exploitation is adjusted 
over the course of the training. After the completion of a 
defined number of episodes, the behavioral strategy 

 is derived from the training data. 

1.3 Integrating Reinforcement Learning into 
a Simulation-Based Experiment 

When integrating RL and dynamic system simulation, the 
MUS forms the environment for the RL agent. The goal 
of such an SBE is 

• to learn the best possible behavioral strategy of the 
agent, 

• to extract this strategy from the training data, and 
• to use it as a controller for the MUS. 

The first two items are defined with an ExpMeth training 
that controls a SimMeth to execute simulation runs. The 
ExpMeth training contains the following basic steps: 

• Set the RL-specific experiment parameters PExM 
such as the learning rate, exploration rate, maximum 
number of episodes, Q-matrix etc. 

• Set the simulation execution parameters PSnM for the 
SimMeth, such as the simulator to be used, the simu-
lation time interval etc.  

• Set the DESM parameters for the EF and the MUS and 
prepare the DESM for executing using a SimMeth. 

• Initialize statistical variables, such as those used to 
record the total reward per episode etc, 

• Compute the defined number of episodes, i.e. call the 
SimMeth into a loop to execute the DESM, update the 
statistical variables after each episode, and check 
whether to abort the training or continue with another 
episode. 

• Determine and save the best policy , and plot essen-
tial learning results. 

Figure 4 shows the basic structure of a DESM with an EF 
for RL in the training phase. The variables  and t repre-
sent the different time bases.  is the continuous time of 
the MUS and t the discrete time for ordering the sequen-
tial states of the RL.  

The input variables IEF are initialized at the simulation 
start time 0, at the beginning of an episode. Results are 
get back via OEF at the end of an episode (eoe). 

The Gen is subdivided into three subcomponents. 
Gen.GMUS initializes the parameters of the MUS at 0 and 
calculates input segments I for the MUS inputs IMUS( ) 
over the course of an episode.  
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Figure 4. Basic structure of a DESM with a MUS  

and EF for RL in the training phase. 

Gen.Agent maps the RL agent. It is part of the Gen be-
cause its output, an action at, produces inputs of the 
MUS. The agent's parameters are initialized via the input 
interface IEF( 0). In addition to the ordinary agent inputs’ 
new state st+1 and the reward value rt+1, the third input 
isDonet+1 is a Boolean value that signals the end or can-
cellation of an episode. At the eoe, the agent creates a 
summary mapping SUAgent that contains RL-specific val-
ues such as the number of steps, the total reward, or the 
strategy learned so far (e.g. the Q-matrix). The SUAgent is 
passed to the Trans. Gen.Encoder defines a mapping 
i( )=h(at) to transform a single action value at into MUS 
compatible input values i( )  IMUS( ) as introduced by 
Choo et al. [3]. 

The Trans is also subdivided into three subcompo-
nents. Trans.Decoder defines (i) the calculation of the in-
terest values O’MUS(t+1) from the current outputs OMUS( ) 
of the MUS related to the time base of the RL (i.e. 
O’MUS(t+1)=f(OMUS( ))), and transformation of the interest 
values O’MUS(t+1) to a state st+1 in the RL space (i.e. 
st+1=g(O’MUS(t+1))). Thus, all interest values of the MUS 
are mapped into one state for the RL and for each partic-
ular interest value there is only one corresponding state 
in the RL space (Choo et al. [3]). The Trans.Reward-
model maps the reward calculation. The reward value 
characterizes a state transition st  st+1 in the RL space. 

Defining the reward calculation is sometimes a diffi-
cult problem. Our own experiments showed that the re-
ward value can sometimes be computed very efficiently 
based on the O’MUS(t+1) values. The component 
Trans.SUmapping implements the overall SU of an epi-
sode and passes it at the eoe to the output OEF. 

The Acc checks compliance with the constraints for 
the episode using defined run control information. Run 
control variables can be initialized via IEF( 0). Typical run 
conditions to be monitored include the simulation inter-
val [ 0, final] of the MUS and thus the maximum duration 
of an episode, the detection of illegal states or the reach-
ing of a target state. The Acc checks all the relevant quan-
tities and sets the isDone value, before sending the tuple 
(st+1, rt+1, isDonet+1) to the Gen.Agent. 

When deploying a learned strategy, we have to distin-
guish whether it is used with or without further learning 
of the agent. For an experiment deployment without 
training the EF simplifies as shown in Pawletta and Bar-
telt [6]. No explicit ExpMeth is required. The SimMeth 
is called directly in the EC according to the number of 
simulation runs to be executed. 

2 Case Study 
The basic implementation of the approach to integrate RL 
and discrete-event simulation introduced in Section 1.3 
will be demonstrated by a case study using 
MATLAB/Simulink and the SimEvents blockset. The 
objective is to develop a control strategy for a MUS with 
discrete-event dynamics. First, the most general possible 
modeling of the MUS, i.e. without concrete references to 
an experiment, is discussed. Then, the same MUS is used 
in three experiments using different EFs: (i) to design a 
heuristic strategy, (ii) to learn a strategy with a self-im-
plemented Q-agent, and (iii) to learn a strategy using 
MathWorks’ dedicated RL toolbox (MathWorks [10]). 

2.1 Model Under Study and General 
Objectives of the Control Design 

The MUS is a simple server line consisting of an entity 
generator, a convertible operating unit, and two down-
stream servers connected in parallel with separate input 
queues as shown in Figure 5. The operating unit can pro-
cess two types of entity (jobType=1 | 2). A separate pro-
cessing time can be defined for each entity type (procT1, 
procT2). A retooling time (retoolingT) is necessary when 
the entity type is changed in the operation unit.  
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Figure 5. Structure of the MUS in SimEvents. 

The calculation of the type of entity and retooling time 
dependent processing time is done during simulation 
runtime using two Simulink functions (not shown in Fig-
ure 5). After processing, branching into one of the two 
FiFo queues of the downstream servers takes place de-
pending on the entity type. The downstream servers have 
different processing times (saleT1, saleT2). The defini-
tion of the different time values is determined by a value 
vector param=[procT1, procT2, retoolingT, saleT1, 
saleT2] at input port3 at the simulation start time 0.  

Entities are generated via input events (msgGenJob) 
at input port1. The entity type (jobType) to be generated 
follows on from the value at input port2. After an entity 
has been processed in the operating unit, the MUS gen-
erates an output event (y_msgFinish) at output port1. Fur-
thermore, the current tool setting (sSetting) of the operat-
ing unit, the current queue lengths (y_#jobsQ1, 
y_#jobsQ2), and the number of completed entities on the 
downstream servers (y_#jobs1sold, y_#jobs2sold) are 
output as data from port2 to port6. Hence, input set IMUS 
and output set OMUS are defined by: 

• IMUS  ={msgGenJob( ), type( ), param( 0)} 
• OMUS={y_msgFinish( ), y_sSetting( ),  

             y_#jobsQ1( ), y_#jobsQ2( ), 
             y_#jobs1sold ( ), y_#jobs2sold( )} 
 

The MUS represents the dynamic system behavior inde-
pendent of a concrete experiment. The goal of the follow-
ing experiments is to design a controller with the best 
possible injection strategy of the two entity types into the 
MUS so then the queues have the most balanced stock of 
both types available for the downstream servers. 

2.2 Designing a Heuristic Strategy 
The top-level structure of the DESM for designing a heu-
ristic control strategy is shown in Figure 6. The MUS 
named Prodline implements the input and output inter-
face described in Section 2.1 with IMUS( ) and OMUS( ). 
The IEF / OEF of the EF are not visible on the top-level 
structure of the DESM.  

This interface is realized via workspace variables. 
The EF consists of five components, of which Parame-
ters, Controller and Encoder form the generator Gen ac-
cording to Figure 2. With the exception of the Encoder, 
the components of the EF operate purely signal-oriented. 

The Transducer monitors the signal-oriented outputs 
of the MUS, maps the variables of interest O'MUS for this 
experiment in a vector yDec=[sSetting, #jobsQ1, 
#jobsQ2], and provides the vector as output variable. 
Moreover, the Transducer generates the SU mapping, by 
providing the time trajectories of the O'MUS quantities as 
EF outputs OEF via the data workspace. 

The Acceptor controls the termination of the simula-
tion after a specified time interval [ 0, final] has elapsed. 
It evaluates the interest variables #jobsQ1 and #jobsQ2 
and terminates the simulation run abnormally if the dif-
ference between the two quantities exceeds a maximum 
value. 

 
Figure 6. Top-level structure of the DESM with MUS and 

EF for designing a heuristic control strategy, 
and substructure of the Encoder block 

The Controller implements the heuristic strategy. It de-
termines the next entity type to be generated based on the 
current values of the interest variables received by the 
Transducer.  
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The goal is to minimize the difference between the 

two queue contents (#jobsQ1 and #jobsQ2) while re-
specting the current tool setting (sSetting). The result is 
passed on as a signal (jobType) to the Encoder. 

The Encoder works event-driven (see Figure 6). If the 
operation server of the MUS is free, it sends an event 
y_msgFinish to the Encoder. Thereupon the Encoder 
sends an event msgGenJob to the MUS and forwards the 
signal jobType that codes the entity type to be generated. 
At the start of a simulation run, the Encoder generates the 
initial input event msgGenJob and sets the entity type 
(jobType=1) to be generated for the MUS. Parameters 
generates the constant input segments for the MUS vec-
tor param for initializing the MUS parameters. 

This is a simple SBE. The EC defines the parameters 
PSnM to be varied and directly calls the SimMeth to exe-
cute simulation runs. 

2.3 Learning a Strategy Using a  
Self-Implemented Q-Agent 

The top-level structure of the DESM for this SBE is 
shown in Figure 7. The identical MUS named Prodline is 
integrated into an RL-specific EF according to Figure 4. 
As in the previous experiment, the EF interface (IEF /OEF) 
is implemented via Workspace variables. Parameters, 
Agent and Encoder form the generator Gen, and Decoder, 
Reward as well as SU Mapping form the transducer 
Trans (cf. Figure 2). To learn a strategy, the agent re-
quires unique state-action tuples (st, at) as well as associ-
ated next state st+1 and reward values rt+1. Hence, the two 
time bases t and  were introduced in Subsection 1.3 for 
the EF and the MUS. Accordingly, the components of the 
EF are implemented event-oriented, with the exception 
of Parameters and SU Mapping. The component Param-
eters is identical to the previous experiment. 

At simulation start time 0, an episode is started by the 
Agent sending an event msgGenJob and setting an action 
value at={1|2} at the output port action. In this case, the 
outputs of the Agent are compatible with the inputs of the 
MUS in value and timestamp with respect to the global 
simulation clock. Hence, the Agent’s outputs are only 
forwarded by the Encoder to the MUS ProdLine that gen-
erates a new entity with jobType=action value. 

When an entity has completed on the operation unit, 
an output event y_msgFinish( ) is sent from the MUS to 
activate the Decoder and study-specific output data( ) is 
passed signal-oriented to the SU_Mapping for trajectory 
recording.  

 
Figure 7. Top-level structure of the DESM with MUS  

and EF for learning a strategy using a  
self-implemented agent component. 

The Decoder selects the information relevant to the RL 
from the MUS outputs( ) and calculates the new state st+1 
of the RL space. To limit the RL space, the Decoder trun-
cates the two queue contents (#jobsQ1 and #jobsQ2) to a 
maximum length. The new state st+1 is thus calculated 
from the two limited queue contents and the current tool 
setting (sSetting) of the operating unit, and output at the 
port sysState4Agent. 

After decoding, the reward calculation is activated by 
an event msgFinish. Contrary to the general approach, the 
reward is not calculated using the RL-related state  
but on the basis of MUS-related interest variables 
O’MUS(t+1), in this case #jobsQ1 and #jobsQ2. In terms of 
content, both approaches are identical but the second one 
resulted in a much better structured reward computation. 

After the reward calculation, the Acceptor is activated 
by an event msgFinish. In this experiment, no constraints 
are defined for st+1 and rt+1, so they are only passed to the 
Agent. Only a control segment is defined for the simula-
tion time interval [ 0, final], which specifies the length of 
an episode. At the termination of an episode, the Accep-
tor schedules an internal event with an infinitesimal time 
advance. The time delay is necessary for data updates in 
the Agent and SU_Mapping at the end of an episode. The 
Acceptor activates the Agent via an event msgFinish and 
signals using the boolean variable isDone whether the 
end of an episode (eoe) has been reached or not. 

The Agent evaluates the boolean isDone value. If is-
Done is false, it executes its learning rules, calculates a 
new action value, and generates an output message 
msgFinish to activate the Encoder. In case of isDone is 
true it performs a data update SU_Agent(eoe) and the ep-
isode is terminated by the Acceptor. 
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Figure 8. Time trajectories of the queue lengths  

computed using the learned strategy of a  
self-implemented Q-agent after 5000 episodes. 

This is a complex SBE. The EC defines the parameters 
PExM and PSnM (cf. Fig. 1), and calls an ExpMeth training 
as described in Subsection 1.3, which calls the SimMeth 
in a loop to execute the DESM for one episode at a time. 
Figure 8 shows the simulation results of the MUS using 
a learned control strategy after 5000 episodes. 

The event-oriented implementation of the EF compo-
nents was done using SimEvents' Discrete Event Charts, 
which call MATLAB functions. This makes the algo-
rithms of the components, such as the learning approach 
of the agent, easily interchangeable. In Pawletta and Bar-
telt [6], the algorithms of this experiment are presented 
in more detail and the full implementation is available on 
Github (FG CEA [4]). 

2.4 Learning a Strategy Using a Dedicated  
RL Toolbox 

The MathWorks offers a dedicated RL toolbox for 
MATLAB/Simulink (MathWorks [10]). This provides an 
agent block for Simulink, which is configured from 
MATLAB. Different learning approaches can be config-
ured in the form of agent types as well as hyperparameter 
settings. Furthermore, the toolbox provides different 
methods, such as a training method called train. In this 
experiment we use the Q-learning agent and the train 
method of the RL toolbox. It must be noted that the doc-
umentation of the toolbox does not contain any hints or 
examples for the use with event-oriented MUS imple-
mented with the SimEvents blockset. According to the 
documentation, the agent block of the RL toolbox works 
signal-oriented.  

A signal is in Simulink a time-varying quantity that 
has values at all points in time. Accordingly, the agent 
block is designed for continuous or discrete-time models 
with equidistant sampling. 

The top-level structure of the DESM for this SBE is 
shown in Figure 9. With the exception of the Triggered 
Agent block, the DESM corresponds completely to the 
DESM in Figure 7, i.e., all other components of the EF 
as well as the MUS were adopted unchanged. Hence, 
only the Triggered Agent is discussed below. 

The Triggered Agent, implements a so-called trig-
gered subsystem and encapsulates the RL agent block of 
the toolbox. The inner structure of the Triggered Agent 
and the input/output interface of the encapsulated RL 
agent are also shown in Figure 9. Analogous to the Agent 
in the previous model (cf. Figure 7), the Triggered Agent 
is activated by the Acceptor per event (msgStart) when a 
new state st+1 of the RL space (input port sIn) and a new 
reward value (input port rIn) as well as the boolean is-
Done value have been calculated. If isDone is false, the 
encapsulated RL agent calculates the next action value at 
as well as updates the cumulative reward value, and then 
the Triggered Agent activates the Encoder by event 
(msgFinish).  

 

 
Figure 9. Top-level structure of the DESM with MUS and 

EF for learning a strategy using the RL Toolbox 
of MATLAB/Simulink, and substructure of the 
Triggered Agent. 
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In the other case, if isDone is true, the encapsulated RL 
agent computes the complete data update of the episode 
SU_Agent(eoe) and, in contrast to the previous model, 
immediately terminates the episode. I.e., the termination 
of the episode by the acceptor according to the previous 
example is skipped. 

The EC defines the parameters PExM and PSnM, and 
calls the RL toolbox specific ExpMeth train, which uses 
an RL toolbox specific SimMeth. 

3 Conclusions 
The integration of discrete-event simulation and RL 
methods has a high application potential for both M&S 
and AI applications. On the basis of the concept of EF 
and the general structure of complex SBE, it has been 
shown how a clear methodological separation can be 
made so that the MUS, EF, SimMeth, simulator and AI 
methods – as ExpMeth – can be developed independently 
and reused in different contexts. The methodological 
considerations have been practically underpinned by a 
case study implemented with MATLAB/Simulink and 
the SimEvents blockset. 

In particular, the three experiments of the case study 
demonstrate that MUS can be developed independently 
of their experimental context. As shown, this is also true 
when integrating with the RL method. The adaptation to 
a concrete experiment can be done by a specific EF, 
higher-level ExpMeths and a supervisory EC. The basic 
structure of an EF and the communication relationships 
in SBE using the RL method were presented. 

SBEs in combination with the RL method are charac-
terized by a large number of methodological parameters 
and variants of agents. Accordingly, the specification of 
such experiment variants and their automated execution 
based on the System Entity Structure and Model Base 
(SES/MB) approach will be investigated in a next step. 
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Abstract. Simulation programs modeling cyclic pro-
cesses can be used in thermodynamics lectures to pro-
mote understanding. Modelica-based simulation envi-
ronments are a good starting point for the development
of such programs, but the handling of the correspond-
ing thermo-fluid standard library is very difficult for non-
experts. The recently presentedDLR ThermoFluidStream
Library is a good alternative, that is easier to use. It pro-
vides most components that are needed in typical cases
and includes full access to the Modelica media library.
It will be shown, how to use the ThermoFluidStream Li-
brary to create examples ranging from the simple Otto
and Diesel cycles over the basic Joule-Brayton and Er-
icsson processes to the water/steam based Clausius-
Rankine cycle. Though the construction of concrete pro-
cesses with given thermodynamic state values and mass
flow still requires some effort, one can apply a systematic
approach for working models for teaching purposes.

1 Introduction

Thermodynamics is a difficult subject for many engi-

neering students, mainly because of its partly unintu-

itive nature using abstract notions like enthalpy and en-

tropy. To promote understanding simulation programs

can be used, which allow to “experiment” with state

changes or complete cyclic processes, such as the col-

lection of Java applets described in [1].

But the construction of such programs is a tedious

and time-consuming task, especially if one wants to in-

clude examples that use more complex media than the

simple ideal gas with constant specific heat capacity.

Instead of writing such programs from scratch, one

could use a simulation environment to describe the ex-

ample models, and leave the actual computation to its

solver. Modelica [2] with its physical modeling ap-

proach seems to be a good starting point, especially

since a comprehensive free model library is available

that describes the thermodynamic behaviour of many

useful media [3]. Therefore it will be used in the

following to build models of the standard processes

that are examined in most introductory thermodynam-

ics courses: the Otto and Diesel processes for closed

systems and the Joule-Brayton and Ericsson processes

for open systems [4, 5]. These models should run on

any Modelica platform, especially on the freely avail-

able OpenModelica environment [6], and can be em-

ployed directly in a thermodynamics course.

The Modelica Standard Library (MSL) already con-

tains an elaborate thermo-fluid library that provides ba-

sic components for one-dimensional thermo-fluid flow

in pipes, vessels or machines [7]. But due to its very

general approach it is much too complicated for the sim-

ple didactical applications addressed here. Addition-

ally, corresponding models recurrently fail to run for

reasons that are hard to find for non-specialists [8].

The recently presented DLR ThermoFluidStream

Library [9] (“ThermoDLR”) seems to provide just the

level of detail that is needed here: On the one hand

it uses the full Modelica media library, on the other

hand it offers components for vessels and machines that

are much easier to handle than their MSL counterparts.

And, most importantly, it uses a very clever, physically

motivated scheme to achieve a high robustness [10] that

should lead to models that generally run without deli-

cate fine-tuning. This makes it a promising foundation

for the construction of didactical examples.

A similar, but simpler and limited approach has been

presented in [11], which also describes a Modelica li-

brary for thermodynamical examples (“ThermoSimT”).
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Since its focus is on teaching Modelica, it does not

use the complex standard Media library, but a greatly

simplified v ersion. E specially i ts s team/water model

only shows basic modeling principles, but is of no prac-

tical use. Nevertheless it allows to easily build models

of all standard processes and will be used as a bench-

mark to assess the ease of use and versatility of the new

ThermoDLR version.

In the following we will briefly d escribe t he basic

ideas of the ThermoSimT library, which provides mod-

els of cyclic processes for ideal gas with constant or

temperature-dependent specific heat capacity and of the

steam/water based Clausius-Rankine cycle. Then we

will use the ThermoDLR library to implement similar

models, utilizing the Media library to get valid practi-

cal results. Due to the didactical purpose and since we

are only interested in equilibrium behaviour, the mod-

els have some unusual features: Heat transfer is done

very fast, the characteristics of compressors or turbines

don’t really matter, and the values of the mass flow and

several state variables are given in advance.

We will show, which problems appeared during the

implementation, and present ways how to deal with

them. This will help to produce similar models for own

teaching purposes. As a starting point, all models de-

scribed here can be downloaded freely from [12].

2 Cyclic Processes in ThermoSimT

Since [11] is a textbook on modeling and simulation,

the main purpose of the ThermoSimT library is to teach

the design and construction of a Modelica library. But

thermo-fluid modeling is a very difficult task, therefore

a lot of simplifying assumptions had to be made: The

mass flow is constant and the flow has always the same

direction, i. e. all connections are uniquely defined as

input or output ports. The components have no states

describing an internal change, but the thermodynamic

variables just jump from the input to the output state.

As a consequence, the described models are static, time

changes can only by implemented by changing work or

heat flows.

Since stream connectors [13] are much too advanced

for an introductory textbook, the connector is based on

the preliminary version of the thermo-fluid library de-

scribed in [3]. ThermoSimT contains components for

simple devices such as a cylinder, a heater, a pump and

a turbine, together with source and sink components

and a state measurement device that outputs all relevant

thermodynamical variables.

Pump and turbine are identically modeled as simple

turbo machines based on an isentropic state change with

a simple linear characteristic

ṁ = Kω.

The simple Media library covers the ideal gas with

constant heat capacity (“simple air”), the NASA dry air

model [14] and a simple model for steam and water,

using ideal gas and ideal fluid equations together with a

Clausius-Clapeyron based vapor pressure curve.

Otto cycle using ThermoSimT.

With these components a model of an Otto cycle can

be built easily (cf. Figure 1). The thermodynamic com-

putations are done in the cylinder component, while ad-

ditional blocks provide a test stand defining the position

of the piston and the amount of external heat. Models

using simple air and dry air are provided, as well as a

similar example for the Diesel process.

Much more interesting from a modeling perspective

is the model of the Joule-Brayton cycle (cf. Figure

2), which describes the actual flow o f t he medium

between components. The mechanical work for the

compressor is provided by a constant torque block,

while the external load at the turbine is modeled using

a simple generator and a resistor. The ThermoSimT

library does not work with a cyclic topology, but an

additional cooler at least brings the state of the medium

back to its initial state. Versions for simple air and

dry air are provided, as well as an identically looking

model using the simple steam/water medium, which

actually makes it a Clausius-Rankine cycle.
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The final example is the Ericsson cycle, which con-

tains several compressors and coolers as well as tur-

bines and heaters, to approximate an isothermal be-

haviour in the turbo machines. It can be modelled easily

with ThermoSimT (cf. Figure 3).

Joule-Brayton cycle using ThermoSimT.

3 Otto and Diesel Processes
Since a cylinder model, which is at the heart of the

Otto cycle model, is not included yet in the Ther-

moDLR library, one has to build it oneself. Fortu-

nately, a complete volume model already exists, to-

gether with several variants. They all inherit from

the parent class PartialVolume, which provides

most of the variables and equations needed, together

with optional HeatPort, Inlet and Outlet. To

construct a CylinderVolume, one simply extends

PartialVolume, adds a mechanical Flange and

provides simple equations for the definition of the vol-

ume, the force and the work at the flange. To simplify

the drawing of a T-s diagram, an explicit variable for

the entropy is added.

Exchanging the cylinder model in the ThermoSimT

Otto cycle is all that remains to do. The new model

works immediately with DryAir, for SimpleAir
one has to extend its range of validity by defining

SimpleAir(T_min=200, T_max=2000)

The Diesel controller component needs the inter-

nal pressure to create an isobaric process, which can

be supplied by a sensor at the optional Outlet of the

CylinderVolume.

Ericsson cycle using ThermoSimT.

4 Joule-Brayton Process with
Ideal Gas

The construction of a model for the Joule-Brayton cy-

cle seems to be almost trivial. One starts by replac-

ing the thermodynamic components from the Ther-

moSimT example with their counterparts from Ther-

moDLR: Source, Sink, Compressor, Turbine,

and ConductionElement as replacement of the

Heater. All parameters have their default values

except for the initial pressure and temperature at the

Source. That the mass flow can not be defined any-

where, is due to the different concept of ThermoDLR:

ṁ is a dynamic variable and is computed in the con-

text of the whole model – here probably mainly depend-

ing on the compressor parameters. With the ideas from

ThermoSimT in mind, this seems to be strange, and in-

deed: Starting the simulation results in the infamous

error “Failed to solve nonlinear system using Newton
solver during initialization.”
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To find the reason of this problem, one exam-

ines a simple test model consisting of a Source, a

Compressor and a Sink. The Source defines start-

ing pressure p1 = 1 bar and temperature T1 = 300 K, the

Sink the final pressure p2 = 6 bar. Using the same

torque as in the ThermoSimT model, the simulation

doesn’t run, which is not surprising, since the compres-

sor from ThermoDLR uses a completely different char-

acteristic curve and default operating point.

To find an adequate torque value, one has to ana-

lyze the equations used in the Compressor compo-

nent. Using default parameters and neglecting regulari-

sations for small variable values, they are:

p2

p1
=

ω2

ω2
re f

− ṁ2

ṁ2
re f

+1

wt =
κ

κ −1
RT1

((
p2

p1

) κ−1
κ

−1

)

=
ωτ
ṁ

They define a quadratic pressure characteristic and

compute the work using the explicit formula of an isen-

tropic process for an ideal gas with constant heat capac-

ity. Inserting the given state variables, the desired mass

flow ṁ = 0.1 kg/s and the default parameter values, one

easily computes values for ω and τ .

Results of the compressor test model.

Using this torque value for the constant torque and

setting the initial value of the rotational velocity to ω
(at least approximately), the test model runs and has

the correct results (cf. Figure 4). In accordance to the

philosophy of the ThermoDLR library, the initial value

of ṁ is chosen to be 0, so that the equilibrium is reached

by simulating the powering up of the system.

A similar computation can be done for the turbine.

Unfortunately, the identical characteristic curve of com-

pressor and turbine contains a very strict regularisation,

whenever the pressure drops (as in the turbine). But of

course it’s simple to create a copy of the curve model

and use the quadratic characteristic for the turbine as

well. Trying to compute the torque for the given state

variable values, one gets a negative value under a square

root. This problem can easily be fixed by changing the

operation point, setting ṁre f = 0.05 kg/s. Finally one

utilizes the linear characteristic of the simple generator

to compute the resistance R, and gets the requested re-

sults.

For the heater, no new computations are necessary,

since the needed heat is fixed by the thermodynamics.

Combining the components (for a start without the fi-

nal cooler) using the new parameter values, one gets

a working Joule-Brayton process, which almost repro-

duces the required values. Only the pressure p2 after the

compressor is slightly higher in the combined model,

maybe due to the effect of several regularisations.

Instead of going through the complete equations,

the fine-tuning can easily be done with a few manual

parameter changes: First one lowers the torque at the

compressor, until p2 reaches the desired value. Here,

the MultiSensor components are very convenient,

which display state variables directly in the graphical

model. Now all pressure and temperature values are

correct, only the mass flow is a bit too small. Better

than fiddling with several parameters at once, one can

use a simple scaling procedure: Increasing all works

and heats by a constant factor q one can change only

the mass flow, not the thermodynamical state. Setting

q = ṁdesired/ṁactual , increasing ṁre f , τ and Q̇ by a fac-

tor q and dividing R by q, one eventually reproduces all

ThermoSimT values.

Finally one adds another ConductionElement
with a large heat transfer coefficient to bring the tem-

perature down to the start value. With the ThermoDLR

library, one can now make it a real cycle by deleting

the Sink and Source components and closing the cir-

cle with an intermediary Volume element. The initial

state, which had been defined by the Source, is now

given as initial value of the Volume.
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5 Ericsson Process with Ideal
Gas

To simplify the construction of an Ericsson model, a

subsystem is built for a line of three compressors and

intermediate coolers (cf. Figure 5), as well as a sim-

ilar model of two turbines with intermediate heater.

Both components contain sensors to output the com-

plete work and heat supplied to the line. This will be

useful to compute the overall efficiency in the complete

model.

Line of compressors for the Ericsson cycle.

Providing correct parameter values, these com-

pressor and turbine components show approximately

isothermal behaviour. Using them in the Joule-Brayton

model and guessing reasonable values for the work-

related parameters τ and R, the Ericsson model runs –

at least, if one lowers the intermediate heating tempera-

ture a bit. As before, one can use fine-tuning to get the

given pressure values and scaling to reach the correct

mass flow. The resulting model is more stable, so that

one can raise the intermediate heating temperature to

the incoming value to better approximate an isothermal

process.

Now we can make good use of the additional pos-

sibilies that are supplied by ThermoDLR, and include

a heat exchanger that utilizes excess heat after the tur-

Ericsson cycle with heat exchanger using
ThermoDLR.

bine for preheating the gas before entering the heater

(cf. Figure 6). To reach the same maximal temperature

as before, one starts with a low heat transfer coefficient

kNTU , then gradually lowers the supplied heat, while

rising kNTU . The final Ericsson model is much more re-

alistic than the previous version based on ThermoSimT.

6 Joule-Brayton Process with
Dry Air

Building a Joule-Brayton example based on dry air as

a medium should be done easily by simply changing

SimpleAir to DryAirNasa, but unfortunately, the

new model doesn’t run: To compute the temperature

from the given enthalpy, the function h(T ) has to be

inverted – but the Dekker-Brent based solver is supplied

with a start interval without a zero.

Looking closer at the DryAirNasa implementa-

tion, one finds another problem: The computation of

the isentropic enthalpy is based on the approxima-

tion of constant heat capacity. This may be good

enough for many practical applications, but in a teach-

ing context one should present a correct solution.

Since the utilised function isentropicEnthalpy
is not declared as replaceable, one has to cre-

ate a copy of the DryAirNasa class and its base

class SingleGasNasa and supply a computation that
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is based on the constant entropy. Additionally, the

function dp_tau_const_isentrop that is used

in ThermoDLR to define the compressor character-

istics, is based on a constant heat capacity formula

as well and has to be replaced by an exact version

dp_tau_const_isentrop_S.

Using these more accurate methods, one is still

faced with the original problem: The inversion gets a

wrong start interval. This is due to the initial value

ṁ(0) = 0: The direction of the flow is undefined ini-

tially and the algorithm tries values that are going into

the wrong direction. Simply setting ṁ(0) = 0.1 kg/s,

which is given anyhow, succeeds and the model runs –

but the values of pressure and mass flow are not the re-

quired ones. Obviously, the seemingly small difference

between SimpleAir and DryAir leads to larger de-

viations than expected.

To find correct parameter values, one again starts

with a simple test model for the compressor. Either by

a direct computation – which can be easily done for dry

air with a small Matlab script – or by a few trial and

error steps, one finds values that lead to the required

pressure and mass flow. Due to the internal inversions,

the model is less stable than its SimpleAir counter-

part: Even if one sets the correct torque value, one still

has to supply an initial value for ω that is large enough.

For simplicity one can instead directly define ω at the

flange. The corresponding computation for the turbine

again shows that ṁre f has to be lowered. After that, the

computation leads to the correct value of the resistance

R. Closing the cycle with a cooler and a volume ele-

ment, one arrives at a Joule-Brayton model with dry air

that – after a bit of the usual fine-tuning – reproduces

the given state and mass flow values.

7 Clausius-Rankine Process
with Standard Water

Basically, the Clausius-Rankine process is a Joule-

Brayton process with water and steam as a medium:

Though its technical realisation is much more compli-

cated due to the phase transitions from water to steam

and back, conceptually it consists of a pump, a heater,

a turbine and a cooler. The media library includes

StandardWater, a precise description of water and

steam based on the IAPWS-IF97 formulation [15]. Yet,

one cannot just use one of the Joule-Brayton models

and change the medium, since the compressor and tur-

bine components of ThermoDLR use explicit ideal gas

relations. For incompressible fluids the Pump compo-

nent can be used, a suitable turbine component is not

provided in the library. Also, completely different val-

ues of the state variables than before will be employed:

The pressure ranges from 0.1 bar to 60 bar, the high-

est temperature should be 500 ◦ C and the mass flow 10

kg/s.

To find working parameters, one can start with a

simple test model for the pump. The ThermoDLR

Pump component provides two different characteris-

tics: a centrifugal pump and a simpler nominal pump,

which is used in the following. Setting reasonable

nominal values and basic parameters, one can once

again use the model equations and the given state

and mass flow to compute a correct value of the ro-

tational speed ω . Adding a standard heater (i. e.

a conductionElement), one can reach the given

temperature by first estimating, then fine-tuning the

needed heat flow. The heating process includes the

complete vaporisation of the water, succeeded by an

overheating of the steam, but all this is automatically

taken care of by the state equations used in IF97.

Adding corresponding sensors, one can easily monitor

the dryness fraction x everywhere in the cycle model.

A generic turbine model TurbineG that works

for StandardWater (and any any other fluid

medium) can be easily constructed: It inherits

from the provided PartialTurboComponent
and uses the explicit characteristic function

dp_tau_const_isentrop_S that has already

been defined for the DryAir example. Since the

medium changes its phase from hot steam to wet

steam inside the turbine, one can expect numerical

difficulties, and in fact: Using default parameter values,

the usual test model doesn’t run, because the pressure

reaches values below the triple point of water. To

find working values, one initially starts with a simpler

process, going from 60 bar to 30 bar instead of trying

to reach 0.1 bar immediately. Changing ωre f und ṁre f ,

one soon gets a model that at least runs for a very short

time. This makes it possible to study its behaviour

and find the reason of the problems. Adapting ω , the

model finally runs to the end. Now one can use the

usual fine-tuning to gradually lower the pressure to the

requested value and to switch from the constant ω input

to the simple consumer model. The needed resistance

value is completely unrealistic, but can finally be scaled

to a meaningful value by changing the transformation

coefficient of the simple generator model.
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Now a first version of a Claudius-Rankine cycle

can be built by combining the pump-heater and tur-

bine models. The model runs only for a short time,

before the final pressure again drops below the triple

point. Enlarging the value of R by a factor of 100, the

model runs to the end, though the state values are far

from the requested ones. Once again one goes through

the fine-tuning process, changing ω , Q̇ and R, to reach

the requested state values. This is much more tedious

than in the previous examples, because the very differ-

ent properties of water and steam lead to a small range

of working parameters. Additionally, their strong cou-

pling sometimes results in a counterintuitive behaviour,

as in the following scenario: One finds a too low tem-

perature behind the heater and increases the heat flow,

which leads to an increase of the mass flow and a falling

temperature. Another problem is the instability of the

standard DASSL solver that is used in the simulation

program Dymola: Occasionally, the solver hangs for

certain parameter values and has to be stopped. Chang-

ing to the Esdirk23a solver drastically reduced the fre-

quency of such events. With a certain amount of per-

severance, results within 1 % of the requested values

could be reached.

Clausius-Rankine cycle using ThermoDLR.

The next step is the addition of the cooler, which is

supplied with a fixed t emperature. Choosing the obvi-

ous value of 45.80◦ C – the condensation temperature
at 0.1 bar –, one doesn’t reach x = 0, therefore one has

to use a smaller value and to increase the heat transfer

coefficient U c onsiderably. Finally adding the volume

element to close the circle, one again gets very different

results and has to tune the cooler parameters once more,

as well as the initial temperature of the volume. But in

the end one reaches a complete Clausius-Rankine cycle

with the requested state values (cf. Figure 7).

8 Conclusions
All examples of the simple ThermoSimT library could

be implemented in ThermoDLR, as well as more com-

plex processes using a heat exchanger or an accurate

water model. ThermoDLR is designed to create models

that run immediately, nevertheless it was nontrivial to

build models that reproduce the given state values and

mass flows. A systematic approach often worked that

was based on the following steps:

• Start with simple models, where initial and final

states are defined by Source and Sink compo-

nents.

• Change the operation points of turbo machines to

values near the given state values.

• Use (simplified) versions of the component equa-

tions to get good starting points for external param-

eters.

• Gradually fine-tune parameters to approximate the

given thermodynamic states. If necessary, change

the mass flow by a scaling procedure.

• Combine partial models and reiterate the fine-

tuning process.

• Finally close the cycle with a Volume component

and properly define its initial values.

Sometimes it was difficult to find proper parame-

ters to make the model run at all or to change the state

into the required direction – especially for a complex

medium such as water and steam. In such cases, it

proved useful to set the initial value of the mass flow di-

rectly to the required value or to define operation points

very close to the target values. Generally, such a model

runs at least for a very short time. This is helpful, be-

cause seeing the results of small parameter changes di-

rectly can provide clues on what to do to finally reach a

running model. Other helpful measures were the intro-

duction of control valves to decouple parts and define

intermediate states, or even to change the solver. When

the model finally works as required, it is generally more
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stable than the previous versions and allows for easy pa-

rameter changes.

The design of the ThermoDLR library, and espe-

cially its ability to start with zero mass flow and model a

power-up situation, makes the modeling of thermofluid

systems much simpler for non-specialists than the com-

plex Modelica Thermo-Fluid library. On the other hand,

the consistent use of the mass flow as a state variable

sometimes leads to unexpected behaviour, when pa-

rameters are changed or submodels combined. Ther-

moDLR provides useful basic components that are easy

to understand down to the equation level and are easy to

extend due to a simple, but convenient inheritance hier-

archy. The supplied MultiSensor components are

very helpful during the fine-tuning phase. Some impor-

tant elements are missing yet, such as a generic turbine

with a corresponding characteristic function or a cylin-

der volume, and had to be added here.

On the whole, ThermoDLR proved to be a very use-

ful tool for the construction of cyclic process models

that can be used for demonstration purposes in thermo-

dynamics lectures. Of course, it requires some effort to

familiarise oneself with the library, but going in simple

steps, as has been shown before, the learning curve is

not very steep and can be mastered by lecturers, who

are not experts in thermo-fluid modeling.
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The development of Artificial Intelligence (AI)
based systems is becoming increasingly prominent in
various industries. The aviation industry is also gradually
adopting AI-based systems. An example could be using
Machine Learning algorithms for flight assistance. There
are several reasons why adopting these technologies
poses additional obstacles in aviation compared to other
industries. One reason is strong safety requirements,
which lead to obligatory assurance activities such as thor-
ough testing to obtain certification. Amongst many other
technical challenges, a systematic approach is needed for
developing, deploying, and assessing test cases for AI-
based systems in aviation.

This paper proposes a method for iterative scenario-
based testing for AI-based systems. The method con-
tains three major parts: First, a high-level description of
test scenarios; second, the generation and execution of
these scenarios; and last, monitoring of scenario param-
eters during scenario execution. The scenario parame-
ters, which can be for instance environmental or system
parameters, are refined and the test steps are executed
iteratively. The method forms a basis for developing iter-
ative scenario-based testing solutions.

As a domain-specific example, a practical implemen-
tation of this method is illustrated. For an object detec-
tion application used on an airplane, flight scenarios, in-
cluding multiple airplanes, are generated from a descrip-
tive scenario model and executed in a simulation envi-
ronment. The parameters are monitored using a cus-
tom Operational Design Domain monitoring tool and re-
fined in the process of iterative scenario generation and
execution. The proposed iterative scenario-based test-
ing method helps in generating precise test cases for AI-
based systems while having a high potential for automa-
tion.

The practical use of Machine Learning (ML) applica-

tions for Artificial Intelligence (AI) based systems in

aviation is still in an early stage. One reason is the

premature nature of guidelines illustrating the proper

implementation of those applications. Specifically, the

additional and strict requirements and constraints for

introducing new systems in the aviation industry pose

an obstacle. This makes the implementation and cer-

tification of ML algorithms for autonomy challeng-

ing. Recently, the European Union Aviation Safety

Agency (EASA) [1] and Society of Automotive Engi-

neers (SAE) [2] each published early versions of fun-

damental guidelines, discussing the implementation of

ML applications in aeronautical systems. These guide-

lines provide requirements to support the integration of

ML-enabled sub-systems and guidance for implement-

ing ML applications. Due to the premature nature of

these guidelines, the certifiability of ML applications in

aviation, especially for fully AI-based systems, is not

yet given. Yet, similar to traditional software, it is cer-

tain that specific verification artifacts need to be pro-

vided to increase trust. Typical artifacts include the re-

sults of conducted tests.

As defined in the EASA guidance, implementing

AI-based systems requires the exact definition of their

Operational Design Domain (ODD). The ODD defines

the conditions under which a system operates correctly.

Specifically, the ODD outlines the operating parame-

ters, encompassing the range and distribution in which

the AI/ML component is intended to function. It will

function as intended only when the specified parame-

ters within the ODD are met.
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Moreover, the ODD takes into account interde-

pendencies among operating parameters to adjust the

ranges as necessary. This means that the ranges for one

or more operating parameters may be contingent upon

the value or range of another parameter [1, 3]. The def-

inition of parameter boundaries for the correct behavior

of an AI-based system becomes especially important

when working in safety-critical domains such as avia-

tion. For instance, the ODD of an aviation system can

help with the definition of design assurance levels [4].

In this context, the definition of the system’s ODD sup-

ports the generation of precise test cases for high test

coverage.

One systematic approach for developing test cases

for AI-based systems in their operational domain is

model-based testing using the Model-Based Systems

Engineering (MBSE) methodology. Due to its highly

descriptive nature and model-centric approach [5],

MBSE is an appropriate methodology to model sys-

tems on system and item level, making it useful in the

development process of test cases for ML applications

[6]. The concepts presented in the work at hand are,

amongst others, exemplified by methods from MBSE.

This paper discusses the generation of test scenar-

ios for an AI-based system. The use case is applying a

computer vision algorithm to perform object detection

and predict dangerous situations. The scenarios repre-

sent different situations with foreign airplanes used for

testing. The detailed use case is explained in [7]. A

method for iterative scenario-based testing of AI-based

systems is presented in the scope of this work. Three

essential parts of the method are defined: A high-level

description of the scenarios to be executed, the testing

environment in which test scenarios are executed, and

a monitoring tool for defining the parameter boundaries

for the ODD of the respective system. A prototypical

implementation of this methodology is also presented.

For modeling the systems involved and developing test

cases, the MBSE tool Cameo1 is used.

The simulation is executed in FlightGear, a highly

customizable open-source software for flight simula-

tion2. The scenarios are generated in a model-based

approach in Cameo and then executed in a FlightGear

instance. Parameters are monitored using a custom

Python library.

1Dassault Systemes, 2022, Cameo Systems Modeler, available at

https://www.3ds.com/products-services/catia/
products/no-magic/cameo-systems-modeler/.

2FlightGear developers & contributors, 2021. FlightGear, Available at

https://www.flightgear.org/.

The findings show that the iterative scenario-based

testing method facilitates the definition and refinement

of test scenarios for AI-based applications.

The remaining paper is structured as follows:

In Section 1, related work and the status quo of

scenario-based testing with a model-based approach

are discussed. Section 2 presents the development of

a domain-independent method for iterative scenario-

based testing. The implementation of this methodology

is presented in Section 3 with tools used for defining

scenarios, executing them, and monitoring them.

In [8], Jafer and Durak discuss the complexity of sim-

ulation scenario development in aviation. They pro-

pose ontology-based approaches to develop an avia-

tion scenario definition language (ASDL). According

to the authors, ontologies provide invaluable possibil-

ities to tackle the complexity of simulation scenario de-

velopment. Durak presents a model-driven engineering

perspective for scenario development in [9]. The use

of metamodels for generating executable scenarios is

demonstrated with a sample implementation. Durak’s

work is closely related to the research presented in the

work at hand, specifically the development of metamod-

els for generating executable scenarios.

Simulation-based data and scenario generation for

AI-based airborne systems is discussed by Gupta in

[10]. In the work, the authors aim to answer the ques-

tion of what needs to be simulated for synthetic data

and scenario generation in the simulation engineering

process of an AI-based system. The used methods are a

simulation-based data generation process adapted from

EASA’s first usable guidance for Level 1 machine learn-

ing applications and the scenario-based approach us-

ing SES, which is explained more thoroughly in the

publications of Durak [11], [12] as well as Karmokar

[13]. The work in [10] is succeeded with [14], which

discusses behavioral modeling for scenario-based test-

ing in aviation and introduces an enhanced approach

for scenario-based testing called Operational Domain

Driven Testing.

Closely related, [15] demonstrates the testing of

black box systems, such as AI-based applications for

autonomous road vehicles, in their ODD. The frame-

work introduced by the authors is used to learn monitors

in a feature space and prevent the system from using

critical components when exiting its ODD.
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Scenario-based testing of autonomous road vehicles

is discussed in [16] and [17]. The authors present an

automated scenario-based testing methodology for ve-

hicles using advanced AI-based applications. The work

shows that the presented formal simulation approach ef-

fectively finds relevant tests for track testing with a real

autonomous vehicle.

In [18], Hungar introduces scenario-based testing

for automated road vehicles. The outcome of later itera-

tions [19] is the PEGASUS method, which is used to as-

sess highly automated driving functions. According to

the author, the most important steps for scenario-based

testing involve capturing all evolutions, i.e. variants, of

functional scenarios, formalization of them, systematic

testing, the analysis of critical regions, and finally, the

development of a risk chart.

Closely related to [9], the work presented in this pa-

per discusses model-driven scenario development. In

addition to the methodologies discussed in the related

work, an iterative scenario parameter adjustment and

generation process is introduced, forming the iterative

scenario-based testing method. The method is illus-

trated with an exemplary generation of test scenarios

for an AI-based demonstrator. In the next section, the

methodology for this domain- and tool-independent it-

erative scenario-based testing method is presented.

The related work shows that there are many ways to re-

alize scenario-based testing for AI-based systems. Es-

pecially when talking about domain-specific tools, a va-

riety of testing strategies are possible. A generalization

of these testing strategies can help with defining uni-

versal testing methods. To achieve that, a fundamental,

tool-independent method is needed to describe the ba-

sic methodology for iterative scenario-based testing on

a high level of abstraction. This method can then be

used to build some domain-specific testing tools. For

such iterative scenario-based testing, three fundamental

components have been identified:

First, a high-level description of the testing scenar-

ios needs to be defined. This high-level model can

be achieved by describing the scenarios’ fundamental

components. Modeling tools or formalized methods can

for instance be used to formulate the scenarios and de-

rive all required scenario variations from the high-level

model. The method shall be capable of generating an

arbitrary number of scenarios with high parameter vari-

ation from the high-level description to achieve satis-

factory test coverage for the application to be verified.

Second, an environment for executing the derived sce-

narios should be selected. The environment can be of

different types, such as simulated, real system, or a mix

of both, e.g. real systems extended with elements from

augmented reality. These environments have different

advantages and disadvantages. A simulated system can

be deployed quickly, offers consistent conditions, and is

cost-effective. The biggest drawback of simulated envi-

ronments is their sim-to-real gap. The gap refers to the

applicability of simulations to real-life environments, as

many simulated environments cannot fully offer all rel-

evant conditions as a real system. The biggest advan-

tage of a real system is its smaller domain gap to the

real-life environment in which the tested application is

designed to operate in. Real systems are hard to deploy

and costly. Especially when talking about automated

and accelerated testing, real systems can pose a finan-

cial and temporal bottleneck in the testing process.

Last, a monitoring tool is required for verification and

for tracking all parameters that are necessary for and

can have some variance on scenarios. By tracking these

parameters and verifying the application to be tested, a

precise ODD can be defined for the system. With feed-

back from the monitoring tool, parameters can be ad-

justed, or new values for the parameters can be chosen

for a new iteration of scenario generation. The tools

qualifying for monitoring, in the chain of scenario-

based testing, are arbitrary. They merely need to be

capable of monitoring parameters in real-time for syn-

chronization purposes. The described method is of an

iterative nature. Each component feeds the next with

some information. This loop is depicted in Figure 1.

The execution of test scenarios can be accomplished

in a simulated environment as well as with a real sys-

tem. Although both approaches are important to con-

sider, the method depicted in Figure 1 is tailored to-

wards testing in simulated environments. For generat-

ing application-readable scenario descriptions with the

scenario modeling tool, some application, e.g. script,
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scenario
generation

scenario
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ITERATIVE
SCENARIO-BASED

TESTING

ODD monitoring

Descriptive
scenarios

Scenario
model

parameter
adjustment

Figure 1: Iterative scenario-based testing

is needed. Similarly, after scenario execution and mon-

itoring, some application is needed that feeds the re-

sult logs to the scenario modeling tool, decides on pa-

rameter adjustment, and triggers new scenario gener-

ation. The use of such intermediate applications and

scripts enables high automation and optimization of the

method. In ideal circumstances, the iterative scenario-

based testing method forms a closed loop with auto-

mated test scenario generation, execution, and real-time

monitoring of parameters.

This section explains an exemplary implementation to

demonstrate the derived method. For the implemen-

tation, domain-specific tools were selected that can be

exchanged depending on the use case. The exemplary

implementation of the discussed method can be divided

into three components: First, the MBSE-based scenario

description and generation using Cameo; second, the

execution of scenarios defined in generated XML files

with the flight simulator FlightGear; and last, the mon-

itoring of parameters during scenario execution with a

custom ODD monitoring tool. The basic flow of infor-

mation and the steps are illustrated in Figure 2.

The high-level model of the scenarios is described

with a profile diagram in Cameo. Profile diagrams are

<<allocate>>
Cameo

<<allocate>>
FlightGear

<<allocate>>
ODD Monitoring Tool

Create scenario
model

Generate scenario
instance

Generate scenario
files

Execute
scenarios

Peform ODD
monitoring

Parameter adjustments

Flow of information and steps for iterative
scenario-based testing used in this work

defined in the System Modeling Language (SysML).

Additionally, extensions are used to increase the mod-

eling capabilities with profile diagrams.

One configuration of a specific scenario is generated

with a block definition diagram, which can be trans-

formed and exported into the desired XML scenario

files with the help of scripts. XML files are gener-

ated for the use case on hand since FlightGear uses an

XML format for the scenario definition. However, other

domain-specific formats can be used as well. The sce-

narios are executed within an instance of FlightGear. A

more detailed description of the implementation is pro-

vided in the following subsections.

A high-level description of the necessary files for sce-

nario execution is displayed in Figure 3. Along with

scenario files, flight plan files are needed for scenario

execution.

The scenario files include various tags which de-

fine the inputs, objects, and attributes when executing

them in FlightGear. An important tag is the <entry> tag

which defines objects used in a scenario and can include

the following additional tags: <callsign> – the identifi-

cation of the airplane, <type> and <model>, <flight-
plan> – the flight plan which the scenario refers to,
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High-level description of the configuration files for
FlightGear

class – the class of airplane, and <repeat> – a Boolean

flag that indicates whether the scenario is executed once

or repeated infinitely often.

The flight plans, which the scenario files refer to,

are also in XML format. The flight plan contains the

<wpt> tag, which can include the following additional

tags: <name> – the name of the waypoint, <lat> –

the latitude of the entry that refers to the flight plan,

<lon> – the longitude, <alt> – the altitude, <ktas> –

the knots true airspeed, <on-ground> – if the specified

object starts from the ground or not, <gear-down> – if

the landing gear is retracted or extended, and <flaps-
down> – for retracting or extending the flaps. Flight-

Gear offers many more configuration files which can be

adjusted to change environmental parameters as well as

parameters of entities and other components of inter-

est for scenario-based testing. For simplicity, only the

scenario and flight plan files along with their parame-

ters are discussed here. Some high-level description,

i.e. metamodel, of the scenario and flight plan files is

needed to generate arbitrary test scenarios.

Figure 4 depicts one instance of the high-level de-

scription of the scenario and flight plan files.

The scenarios are executed within FlightGear. The re-

spective scenarios, in their descriptive XML format, can

be executed manually in a FlightGear instance, or re-

ferred to as parameters for automatic execution with

Block definition diagram of one scenario and flight
plan configuration

startup of FlightGear. For automation purposes, we

chose the latter. As explained in the previous subsec-

tion, one or more entries, e.g. planes, can be defined in

a scenario file, with each flying according to a prede-

fined route.

In this instance, one passenger airplane is defined,

which narrowly passes the user’s plane. Both planes are

flying towards each other. Figure 5 shows a screenshot

of the scenario during execution in FlightGear.

Several parameters can have a variance on the scenar-

ios executed in FlightGear, some of which were defined

above.
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Passenger airplane narrowly passing user’s Cessna

For a complete ODD definition, a dditional param-

eters, apart from the ones presented above, need to be

considered. One example is environmental parameters

such as weather conditions. The more operational pa-

rameters are considered within the ODD, the higher the

test coverage of the scenarios and the narrower the sim-

to-real gap. Naturally, parameters should be chosen

based on their impact on the scenarios, and therefore the

ODD. A high-level description of the domain model for

the ODD of the AI-based system used on an airplane is

depicted in Figure 6.

Domain model for the ODD of the scenario-based
testing method

The parameter boundaries for the use case of object

detection during scenario execution can be determined

in an iterative process. Due to the high number of pa-

rameters to be considered, a manual exhaustive search

for parameter boundaries is highly time-consuming.

Therefore, some tool is needed which can track

the necessary parameters during scenario execution and

give feedback on the result of the tested application.

For monitoring these parameters in FlightGear, a

public Python library3 for fetching parameters from

FlightGear’s property tree is used. The AI-based system

tested in this example is an object detection application.

The result of the object detection, within the operational

domain, and desired parameters can be logged using the

monitoring tool. The feedback generated from the tool

can then be used to adjust the values of selected pa-

rameters in Cameo according to the ODD boundaries,

generate new scenarios, and redefine the ODD of the

application. This iterative process can be used to de-

fine the ODD boundaries of each parameter with every

iteration.

A simplified ODD for the system with the two pa-

rameters altitude and speed can be defined as follows:

“The application performs correct object detection of

intruding airplanes of type Boeing 737 within follow-

ing parameter boundaries:

• Altitude of intruding airplane relative to own air-

plane in feet, Δ alt: -100 to 100.

• Cumulative speed of intruding airplane as well as

own airplane in knots true airspeed, Σ ktas: 0 to

500.”

Table 1 shows an exemplary log recorded during ex-

ecution of a scenario in FlightGear.

Log # lat lon Δ alt Σ ktas detect

1 63.970 -22.65 100 400 no
2 63.974 -22.65 100 399 no
3 63.978 -22.65 100 400 no
4 63.982 -22.65 100 399 yes
5 63.986 -22.65 100 400 yes
6 63.990 -22.65 100 403 yes
7 63.994 -22.65 100 399 no
8 63.998 -22.65 100 400 no

Exemplary log of parameters monitored during
scenario execution in FlightGear.

For completeness and to reflect other relevant pa-

rameters currently covered in the scenario model, the

3Munyakabera Jean Claude, 2022. flightgear_interface, Available

at: https://github.com/ironmann250/flightgear_
interface
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latitude and longitude of the intruding airplane are

logged along with the aforementioned altitude and

speed.

The table shows that successful object detection is

on hand for logs four to six. Therefore, the predefined

ODD holds for the combination of parameters on hand.

Now, single parameters can be adjusted for a potential

revaluation of the predefined ODD. In this case, the al-

titude of the intruding airplane relative to the own air-

plane is increased by 100 feet. First, a scenario with a

new configuration of attributes needs to be generated,

similar to the one depicted in Figure 4. In this case, the

altitude is adjusted to reflect the definition for the new

test case. Lastly, the necessary XML files are generated

from the configuration model.

Now, scenario execution in FlightGear and parame-

ter monitoring can be performed. Table 2 shows the log

for the second iteration of parameter monitoring.

Log # lat lon Δ alt Σ ktas detect

1 63.970 -22.65 200 400 no
2 63.974 -22.65 200 399 no
3 63.978 -22.65 200 401 yes
4 63.982 -22.65 200 400 yes
5 63.986 -22.65 200 400 yes
6 63.990 -22.65 200 400 no
7 63.994 -22.65 200 400 no
8 63.998 -22.65 200 400 no

Exemplary log of parameters monitored during
scenario execution in FlightGear.

As shown in the second table, the object detection is

successful for logs three to five. The predefined ODD

still holds for the combination of parameters on hand.

However, the ODD can now be adjusted and phrased

more precisely in line with the altered parameter. The

ODD for the application can therefore be rephrased as

follows:

“The application performs correct object detection of

intruding airplanes of type Boeing 737 within following

parameter boundaries:

• Altitude of intruding airplane relative to own air-

plane in feet, Δ alt: -100 to 200.

• [...]”

the changes in detection performance drop below

some predefined threshold and a sufficiently precise ODD

has been determined. Note that precision does not refer

to some performance measure, but rather to the perceived

precision which is currently chosen arbitrarily.

The exemplary implementation of model-based

scenario generation and ODD monitoring in this

section follows the method presented in Figure 1.

Domain-specific tools utilizing Cameo, XML files, and

a Python application were used to build a framework

for iterative scenario-based testing.

The implementation can be seen as a minimal

working example, demonstrating the iterative

scenario-based testing method explained in Section 2.

The implementation can be developed further to allow

for closed-loop scenario-based testing with automated

scenario generation, execution, and monitoring.

The use of ML applications in systems such as

airplanes is steadily increasing. The thorough

testing of these systems is a fundamental part of their

development process. Certain industries, such as

aviation, impose strict requirements and constraints for

the use of AI-based applications, increasing the testing

efforts required to cer-tify and use these applications.

Additionally, ML applications are often con

sidered a black box. Therefore, black box testing

methods need to be put in place that are as rigorous as

current testing methods for common software systems.
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airplane. For this purpose, a scenario-based testing

loop was developed, including the three steps of

generating application-readable scenario descriptions

from models, execution of these scenarios, and para

meter mon-itoring with model parameter adjustments.

In addition to generating arbitrary test cases, the pre-

sented method illustrates the approximation of bound-

aries for the ODD of the ML application with iterative

parameter adjustments.

This method can be further optimized by connecting

its components, i.e. the high-level scenario description,

scenario execution, and ODD monitoring, and creating

a closed loop with automated scenario generation, exe-

cution, and parameter adjustment.

Additionally, test oracles that determine the success

or failure of individual tests should be investigated. The

granularity of test cases, i.e. only success and failure

evaluations or more finely-grained evaluations, is im-

portant. These findings will be investigated in future

research.
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Abstract.  This paper presents an integrated approach to 
explore human factors in the craft sector. The embedded 
use case consists of craft workshops being 3D-modelled 
and simulated so that different scheduling rules can be 
deployed. The connected VR visualization allows craft pro-
fessionals to experience scheduling rules and their impact 
on different performance measurements in an environ-
ment intuitively resembling their actual workshops. The 
lessons learned from the simulation modelling are col-
lected and presented. A modular approach appears to be 
beneficial for simulation modelling, offering flexibility and 
pragmatism but detail when needed. Apart from this an-
ecdotal evidence, the study is accompanied by interviews. 
These are analyzed based on abduction grounded theory 
which combines a strong focus on the actual corpus of 
qualitative data but considers theoretical foundations, 
when appropriate. This paper presents the study design, 
and how it interties with the research approach and the 
use case of simulation and virtual reality for carpentries. 

Introduction 
Industry 4.0 is a well-known term for production scien-
tists and practitioners. However, the typical craft work-
shop is usually only partially, if at all, automated. While 
the selective use of automation can be justified by smaller 
production quantities and lower economic efficiency, 
such argumentation cannot fully transfer to digitisation 
trends. Industry 4.0 solutions often had a strong technical 
focus. In contrast to that, most recent approaches, with 
the label Industry 5.0 pay more attention to human factors 
in the production environment [1, 2]. This may offer sim-
ilarity to the value creation in the craft sector. 

One tool used in this context is discrete event simula-
tion (DES) to model and simulate material flows through 
the production facility. DES is linked to the term digital 
factory. For example, it is used to virtually assess produc-
tion layouts for production facilities both new and re-
planned or different options of production scheduling. In 
contrast to that, the craft sector lags in applying digital 
tools. However, the requirements from both areas show 
certain similarities, as both value on-time delivery, 
throughput, capacity utilisation, lead times, etc. 

1 Research Context 
Compared to industrial value creation, increased la-

bour productivity has only been accomplished to a lesser 
extent in the craft sector. Among other things, crafts are 
characterised by the fact that tools are operated manually. 
In contrast to that, industrial processes are mostly char-
acterised by machine-guided tools. Ancillary processes, 
however, are not covered by this distinction but are sim-
ilar to those from the industrial sector. Productivity de-
scribes the relationship between input factors and output 
over time, which is closely linked to the term technology 
from an economics point of view. New technologies are 
usually described by the term innovation. This section 
presents a brief introduction to current state of the art for 
craft research, innovation diffusion, technology ac-
ceptance, simulation, and virtual reality (VR). 

1.1 Craft Research 
The craft sector is multifaceted and almost exclu-

sively characterised by mostly small and some medium-
sized enterprises [3]. Crafts account for 12.4 % of em-
ployment and 25 % of apprenticeships in Germany. 
Roughly 8 % of Germany’s gross domestic product 
(GDP) is generated in the craft sector [4]. With the dis-
proportionately large share of apprentices, it can be as-
sumed on the one hand that there is sufficient digital lit-
eracy [5]; on the other hand, that the integration of digital 
content into training is of even greater significance [6]. 
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Compared to enterprises from the industrial sector, 

digital tools are used less intensively in the craft sector 
[7]. The difference and the need to catch up in terms of 
digitalisation, have already been the subject of various 
studies [8–11]. 

The craft sector has been affected disproportionately 
by the demographic change and will continue to do so: A 
large proportion of workers in this sector will retire in the 
next five to ten years. The general demographic of 
smaller cohorts following the so-called baby boomers 
won’t be able to compensate for that. Furthermore, it can 
be observed that the choice of training by these overall 
fewer potential applicants, also in relative terms, was 
taken less and less in favour of craft professions [12].  

At the same time, it is assumed that the demand for 
craft professionals will remain constant or even increase 
[13]. Thus, everything points to an increasing labour 
shortage in this sector. This calls for new technologies 
that could potentially increase labour productivity. Thus, 
innovations need to emerge or be transferred and spread 
(diffuse) throughout the craft sector. 

1.2 Innovation Diffusion 
The fact that the craft sector does not use the potential of 
existing technologies to the same extent as the industrial 
sector raises the question of how innovations emerge in 
the craft sector. Innovation theory has produced various 
models to describe innovation processes.  

The traditional linear innovation model [14], which is 
based on a neo-classical understanding and thus often as-
sumes an exogenous technology push, does not seem to 
be able to explain the different degrees of utilisation in 
industry and craft: Technology and utilisation are open to 
both sectors. 

Considering individual perceptions and mutual influ-
ence between individuals and sectors seems a better fit 
for the focused craft sector. More current models from 
the group of systemic approaches, such as the Technolog-
ical Innovations Systems Approach, for example, include 
those behavioural aspects [15]. 

Such behavioural aspects can arise, for example, from 
individual acceptance (or non-acceptance in case of re-
jection). Acceptance has been formalised through differ-
ent models, whereas the Technology Acceptance Model 
(TAM) is commonly used. TAM has emerged less sys-
tematically than the aforementioned innovation theory 
models, but from requirements management for specific 
solutions [16].  

 
Figure 1. Modelled Technology Acceptance. 

Originally designed to assess the acceptance of infor-
mation and communication technology, especially com-
puter programs, various extensions (TAM2 and TAM3) 
have been established for a wide range of applications 
and have been proven to be robust [17]. The TAM as-
sumes that acceptance is directly related to the actual use 
of a certain technology [18], as it is depicted in Figure 1. 

In the context of basic innovation theory terminology, 
rooted in Schumpeter’s work, this relates to what makes 
up an innovation in the first place: Namely, an invention 
or idea that becomes established by wide application 
[19]. The TAM supports the interviewing of probands pre 
and post exposition to novel technologies to determine 
influencing factors. 

1.3 Simulation in Production and Logistics 
“A simulation is the imitation of the operation of a real-
world process or system over time” which may be ad-
vised for a broad range of applications from operations 
research and systems analysis [20]. Simulation has been 
established for both planning new and replanning exist-
ing processes, systems, or factories in production and lo-
gistics. While a variety of different software suites has 
evolved to cover a wide area of application, the method 
of DES has become especially popular for many scopes 
in production and logistics.  

Bracht et al. classified visualisation as either to be dy-
namic or static to describe whether the visualisation is 
dynamically changing during the simulation run [21, 22]. 
Animation is a special type of visualisation, according to 
VDI 3633 Sheet 11 [23]. Nevertheless, animation is no 
synonym for simulation, which describes the method of 
computing a system's behaviour [22]. Wenzel points out 
that not only insights but also the communication of these 
insights ought to be achieved by simulation [24]. Com-
mon use cases are found in the automotive sector, com-
missioning, chemical industry, or food industry.  

External 
Variables

Perceived 
Usefulness 

Perceived 
Ease of Use

Attitude 
Towards 
Usage

Behavioural 
Intention to 

Use
Actual Use



Prell & Reiff-Stephan    Use Case for Digital Tools: Simulation and VR for Carpentries 

SNE 33(4) – 12/2023   193  

T N 
It is striking that non-industrial production has not 

been examined with simulations, even though layout 
planning or scheduling is relevant in this sector as well. 
Recent developments have led to the establishment of 
3D-visualisation, which is easily understood also by non-
experts.  

1.4 Virtual Reality 
Digitisation and process optimisation projects are often 
accompanied by the expectation that the results will have 
a positive impact on the profitability of value creation 
and are always associated with a risk of failure due to 
project-inherent uncertainties [25]. 

Hence, early transparency is of great importance, 
which can be supported by VR. Figure 2 depicts the so-
called reality-virtuality continuum, according to [26]: 
The most left pole represents the real environment, with 
no virtuality. The augmentation of real objects by con-
text-based information is called augmented reality. The 
reason for that is, that real objects make up most elements 
in the user’s field of vision resp. perception [27].  

Meanwhile, VR is usually created by displays that ex-
clude real-world objects. Instead, a virtually created 
world is displayed and mostly synchronised to head 
movements to realistically stimulate human senses [28]. 
VR is not enabling a completely virtual environment, as 
humans, generally speaking, have further senses that are 
still connected to reality and not yet stimulated virtually, 
e.g. sense of balance, smelling, etc. Together, AR and VR 
make up the term mixed reality [29]. 

According to the classification of Reif either head-
mounted displays or emulators support the visualisation. 
For the proposed use case, the HTC Vive counts as a 
head-mounted display, which is powered by an external 
computer, running the simulation [30]. The provided 
hardware allows six degrees of freedom, for best immer-
sion: Three for rotative movements, usually of the head 
like yawing, rolling and pitching, and the three transla-
tory motion forward, leftward, or rightward [31]. 

VR applications can be already found in practice: Ed-
ucation, production planning, or process optimisation as 
well as the visualisation of products for customers are 
common applications [32].  

 
Figure 2. Reality-Virtuality Continuum according to [26]. 

 
Figure 3. Welding Training in VR, 

One study found training, planning, and communication 
to be the most relevant topics for VR in crafts [33]. Figure 
3 shows a welding simulation, which is one of the exam-
ples used in the aforementioned study. Furthermore, vis-
ualisation is stated for planning, even though the authors 
don’t state layout planning explicitly for production en-
vironments but kitchens. 

VR offers a rather intuitive orientation and the possi-
bility of a controlled environment that can be of high 
value, e.g. in training scenarios that are not feasible oth-
erwise, as they might be too expensive or too dangerous. 
A potential drawback of such a technology is the so-
called motion sickness [34]. 

2 Research Design 
The research design employs use case analysis as it is 
common in engineering science to anecdotally pass on 
experiences of designing and implementing technical 
systems. That way, the lessons learned can be deduced 
and documented. The novelty of this topic strongly points 
towards explorative research. That is why the proposed 
design integrates grounded theory from the field of social 
science. It is used to create hypotheses about human be-
haviour and social life from field data, which consists 
mainly of interview transcriptions and observations [35]. 

More precisely, abduction grounded theory is used, as 
theoretical elements from literature, as presented in Sec-
tion 1, are considered as well. The use case presents a 
convenient way to get in touch with the research object 
(craft professionals) and expose them to DES and sched-
uling, which are state-of-the-art industrial and digital 
methods. This technology shock is then used to track re-
actions from individuals and their associated groups, re-
spectively the company. The remainder of this paper dis-
cusses the identified use case and the planned data col-
lection and analysis, while further aspects of the research 
design are displayed in Section 4, once the use case has 
been described. 
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3 Use Case Description and 

Realisation 
This section describes the activities planned to create a 
DES model and to display scheduling alternatives to craft 
professionals. Figure 4 represents the overall model of 
procedure. The main subtasks were adopted to a reduced 
extent from VDI 3633 [36]. The standard process (grey 
arrow) is deployed on an abstract level. This is to create 
modules of different layouts that may occur or make up 
actual workshops of craft companies. These modules 
were defined as flow shop or job shop layouts.  

Hence, modular simulation models for each of these 
two are implemented (blue arrow) using synthesised data, 
representing typical workshops of this sector. For the 
modelling of the actual workshop, the real-world data 
needs to replace the modules’ dummy data, and parame-
ters need to be set accordingly. Especially the 3D visual-
isation needs to reflect the specifics of the craft work-
shop. This can be done by using 3D-design software such 
as Blender or CAD software like SolidWorks or Auto-
desk Inventor. 

These 3D objects are then imported into the simula-
tion software by Siemens Tecnomatix Plant Simulation. 
Only machines relevant for the schedule are designed in 
detail to ensure reasonable usage of resources. Other ma-
chinery or the workshop surrounding can be integrated as 
panes displaying 2D-photos of the respective objects. 
This allows a shortcut in modelling while ensuring intui-
tive resemblance. Finally, a functioning virtual 3D image 
of the workshop is created (orange arrow). 

 
Figure 4. Model of Procedure for Simulation Creation. 

3.1 Layout Patterns 
This subsection presents the two main layout options that 
are thought to modular build up most craft workshops: 
Flow shop and job shop, which also determine the respec-
tive scheduling problems. 

Flow Shop Problem (FSP) represents a scheduling 
problem where all jobs have the same processing se-
quence [37]. Usually, a flow shop is characterised by a 
flow-oriented layout, so that machines are arranged in se-
ries, as shown in Figure 5. This allows jobs to flow from 
an initial machine, through several intermediate ma-
chines to the final machine. This means that each opera-
tion after the first has exactly one direct predecessor, and 
each operation except the final machine has exactly one 
direct successor [38]. 

Common objectives for FSPs are to find schedules 
that minimise longest completion time or makespan 
while maximising machine utilisation. This possibly 
leads to the highest throughput [39]. Flow shop produc-
tion is usually associated with portfolios of only a few, 
highly standardised products, with predictable demand. 
Thus, the most common production strategy is make-to-
stock. The number of constraints to consider, when 
scheduling, is significantly less than for a job shop lay-
out. For instance, the setup time is rarely considered since 
setups do not occur often. A flow shop provides good vis-
ibility of occurring problems due to the linear layout. 

Job Shop Problem (JSP) consists of jobs, running 
through a common production facility but having differ-
ent machine orders [40]. Jilcha & Berhan [41] and Li et 
al. [42] present JSP using the following definition: Job 
shop scheduling happens in a work location of a given set 
of general-purpose workstations where a variety of jobs, 
each with a specific set of operations, is processed in a 
given sequence.  

Jobs, therefore, have their individual routing and 
might use all machines of the respective layout or a sub-
set of these (see Figure 5). 

 
Figure 5. Flow Shop and Job Shop Layout Principles. 
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A JSP’s objective usually is to minimise the 

makespan, subject to the constraints specified for each 
job. Overall characteristics of production in a job shop 
environment can usually be summarised as follows: 
Firstly, the variety of products is very high due to the pos-
sibility of customisation.  

Therefore, the production layout requires high flexi-
bility which leads to low process standardisation. Addi-
tionally, demand is harder to predict than for the typical 
FSP-associated product portfolio since it usually operates 
under a make-to-order strategy. Admittedly, not only 
customised, or single pieces are produced in job shop 
configuration, but small batches as well. Finally, regard-
ing the workers' skills, professionals working in job shop 
layouts need to master more tasks. Hence, they require 
more training in their respective qualifications. 

Scheduling production in a job shop environment 
should consider the following aspects: The make-to-or-
der strategy is linked to the target of on-time delivery. 
Overlooking the process is much more complex since 
every product has its specific routing. 

3.2 Priority Rule-based Scheduling 
Priority rules have been used for decades as a sched-

uling procedure for production. Its main objective is to 
define the sequence in which the pending jobs are pro-
cessed, in a given period. It is known that priority rules 
will usually provide inferior solutions in comparison to 
what may be given by other advanced algorithms, e.g., 
genetic algorithms, neural networks, simulated anneal-
ing, etc. However, it is commonly used because its im-
plementation is easy and does not require expert 
knowledge nor skills [43]. As more complex approaches 
may be feasible for some craft companies, the authors as-
sess rule-based scheduling to be more suitable for most 
companies in the craft sector. Hence, scheduling shall be 
limited in this paper’s scope to priority rules. The Ency-
clopedia of Production and Manufacturing Management 
[44], as well as Koruca & Aydemir [43], present in their 
work the most commonly used rules for production 
scheduling. Ten of these rules are introduced in Table 1 
and will be implemented in the simulation modules. 

Figure 6 depicts the implications from these rules, us-
ing 5 jobs (J1-J5) with varying process times. 

 
 
 
 

Rule Description  

First come, 
First served 
(FCFS) 

Jobs will be scheduled and processed ac-
cording to which was first to arrive either in 
the queue or to the machine. 

Last come, 
first served 
(LCFS) 

The last job to arrive is the one that is 
scheduled or processed next. 

Shortest 
processing 
time (SPT) 

When scheduling the job, the one with the 
shortest processing time among those in 
the queue is processed next. This reduces 
the work in process inventory, the total 
flow time, and the average job lateness. 

Longest pro-
cessing time 
(LPT) 

This rule will schedule the job with the 
longest processing time among the jobs in 
the queue, next. While using this rule for 
scheduling the total completion time or 
makespan will be minimised. 

Earliest due 
date (EDD) 

When applying this rule, the job with the 
earliest due date will be processed next. 
The main aim of the rule is to reduce job 
lateness.  

Shortest re-
maining 
processing 
time (SRPT) 

The job that will have the priority of being 
processed is the one that has the shortest 
remaining processing time. The main aim of 
this rule is to minimise the total completion 
time or makespan and minimise the latest 
job delivery time. 

Longest  
remaining 
processing 
time (LRPT) 

The job that has the longest remaining pro-
cessing time will be processed next by the 
machine. The aim of this rule is to maximise 
the capacity utilisation of machines/work-
stations in the work location. 

Slack time 
(ST) 

Is a variant of earliest due date rule, consid-
ering the remaining processing time (setups 
and lead time). The job that has the small-
est amount of slack gets top priority. This 
rule integrates customer orientation and 
capacity utilisation. 

Next Queue 
(NQ) 

While scheduling, the NQ rule considers the 
queues at each of the succeeding ma-
chines/workstations where the jobs are 
heading. The priority goes to the job whose 
machine/workstation has the smallest 
queue. 

 
Table 1: Priority-based scheduling rules. 
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Figure 6. Priority-based scheduling rules, and their ex-

emplary impact on the sequence of jobs 

4 Further Course of the Study 
According to the outlined research design, the use case of 
scheduling is embedded in the simulation and application 
of VR by craft professionals. The following subsections 
cover the methodological integration and the interviews. 

4.1 Study and Use Case Integration 
The use case analysis and the human factor analysis can 
be seen as two outcomes of this integrated work, which 
are different but not separate, as presented in Figure 7. 

The work on the use case is currently ongoing as well 
as the acquisition of cooperating companies. The re-
search questions have been defined as: 

 

 
Figure 7. Model of Procedure for Conducting the Study . 

• How is the innovation process characterised in the 
crafts sector? What roles do various individual and so-
cial stakeholders play? 

• What kind of innovation-type classifications are feasi-
ble for craft companies? 

• Which special features can promote the prevalence of 
novel technologies and how are they related? 
 

The presented research design offers a path to find under-
pinning explanatory hypotheses for those research ques-
tions. The study that encloses the actual applications is 
designed and the data collection and analysis are pre-
pared according to the following subsection. A minimal 
feasible model has been created and software evaluated 
that allows realistic but also pragmatic modelling of the 
actual machinery. The adaption to the first actual work-
shop is the next step to be taken. 

4.2 Interview Preparation 
Conversational interviews are the preferred interview 
technique for qualitative research at the exploratory stage 
[45]. Semi-structured guidance can promote story-telling 
by the interviewees. The target is to capture accounts of 
experience and behaviour related to the research question 
respectively leading to hypotheses. Thus, the theoretical 
background of Section 1 was considered for the design of 
the guiding questions [46]. Nonetheless, the interviews 
should only be carefully guided, avoiding any priming of 
interviewees when it comes to attitudes and sentiments.  

Guidance can try to steer the conversation towards 
topics of internal or external communication, the used 
channels of communication and their recipients, useful-
ness, job relevance, ease of use, the perceived benefit and 
usage intention. For a similar approach, assessing a dif-
ferent use case the authors thought it useful to not reveal 
those subtopics directly nor the research question to 
achieve honest accounts. Therefore, the conversation was 
supported by a SWOT (Strength, Weakness, Opportunity 
and Weaknesses) template (Figure 8).  

 

 
Figure 8. SWOT Framework for Interview Guidance. 
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This template is shortly explained to retain the inter-

viewees’ attention for the rest of the interview. This was 
assessed to cover the actual research questions well. Nev-
ertheless, the interviewees ought to be made aware of the 
abstract topic of technology transfer into the craft sector 
for reasons of integrity. Provided the interviewees give 
their permission, the interviews are to be directly voice 
recorded or otherwise transcribed in great detail. Further-
more, impressions from the interview setting should be 
noted. 

This so-called corpus of qualitative data is then ana-
lysed by interpretation, identification, and assignment of 
patterns and the deduction of explanatory hypotheses. 

5 Conclusion and Outlook 
This paper presents a mixed-methods approach to explor-
atively study the acceptance and diffusion of innovations 
within the craft sector while realising a DES use case. A 
DES model of an actual craft workshop is intended to 
employ different scheduling scenarios, and show the ef-
fect on different performance indicators that are relevant 
across the sectors of industry and crafts. Scheduling, in 
this case, represents an industrial method that is demon-
strated using digital technology, which is novel to the 
craft sector.  

Both, method and technology are not used exten-
sively in crafts and, therefore, offer innovation potential. 
How craft professionals assess this potential and respec-
tive usage within their field of work on an individual but 
also a company-wide level is explored through accompa-
nying conversational interviews. 

This paper presents the outline of the research design 
and the underpinned model of procedure for the actual 
realisation of the use case. The study is currently at the 
phase of the use-case realisation and a minimal viable 
DES has been implemented. The authors hope to employ 
the proposed design on different occasions, receiving 
thick feedback data that can be documented and ana-
lysed, to formulate detailed hypotheses for technology 
acceptance and innovation diffusion in the craft sector. 
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E U R O S I M  D a t a  a n d  Q u i c k  I n fo  

  

ASIM SST 2024  27. Symposium Simulationstechnik  
27th Symposium Simulation Technique 

4. - 6. September 2024, München, Univ. BW, Deutschland    www.asim-gi.org 
 

 

SIMS 2024 – 65. Int. Conference 
September 2024, Scandinavia 

www.scansims.org 

I3M 2024   International Multidisciplinary  
Modeling & Simulation Multiconference 

www.msc-les.org/i3m2024  
 

 

EUROSIM CONGRESS 2026 
July 2026, Italy   www.eurosim.info 

 

Winter Simulation Conference 2024,  
December 15-18, 2024 

Orlando, FL, USA    www.wintersim.org 
 

 

ASIM FG Workshop SUG 2024  
Simulation in Umwelt-und Geowissenschaften 

10.4.-12.4., Leipzig, Deutschland  

ASIM Workshops GMMS/STS/EDU 2024 
in ASIM SST 2024, September 2024, München 

www.asim-gi.org 
 

 

EUROSIM – the Federation of 
European Simulation Societies was 
set up in 1989.  

The purpose of EUROSIM is to provide a European forum 
for simulation societies and groups to promote modelling 
and simulation in industry, research, and development – 
by publication and conferences. 

 www.eurosim.info 
EUROSIM members may be national simulation societies 
and regional or international societies and groups dealing 
with modelling and simulation. 
Full Members are ASIM, CEA-SMSG, CSSS, DBSS, KA-
SIM, LIOPHANT, LSS, PTSK, NSSM, SIMS, SLOSIM, 
UKSIM. Observer Members are ALBSIM and ROMSIM. 
Former Members (societies in re-organisation) are: CROS-
SIM, FRANCOSIM, HSS, ISCS. 

EUROSIM is governed by a Board consisting of one repre-
sentative of each member society, president, past president, 
and SNE representative.  

President Agostino Bruzzone (LIOPHANT) 
agostino@itim.unige.it 

Past President M. Mujica Mota (DBSS), 
m.mujica.mota@hva.nl 

Secretary Marina Massei  (LIOPHANT), 
massei@itim.unige.it 

Treasurer Felix Breitenecker (ASIM) 
felix.breitenecker@tuwien.ac.at 

Webmaster Irmgard Husinsky (ASIM),  
irmgard.husinsky@tuwien.ac.at 

 SNE – Simulation Notes Europe is 
EUROSIM’s membership journal with  

peer reviewed scientific contributions about all areas of 
modelling and simulation, including new trends as big 
data, cyber-physical systems, etc. 
The EUROSIM societies distribute e-SNE in full version 
to their members as official membership journal. The 
basic version of e-SNE is available with open access. 
Publishers are EUROSIM, ARGESIM and ASIM, 
 www.sne-journal.org 
 office@sne-journal.org 
SNE-Editor: Felix Breitenecker (ASIM) 
felix.breitenecker@eic@sne-journal.org 
EUROSIM Congress and Conferences 
Each year a major EUROSIM event takes place, as the EU-
ROSIM CONGRESS organised by a member society, SIMS 
EUROSIM Conference, and MATHMOD Vienna Confer-
ence (ASIM).  
On occasion of the EUROSIM Congress 2023, the 11th 
EUROSIM Congress in Amsterdam, July, 2023, a new 
EUROSIM president has been elected: we welcome Ago-
stino Bruzzone, well known simulationist, as new presi-
dent. His society LIOPHANT will organize the next EU-
ROSIM Congress in 2026 in Italy.  
Furthermore, EUROSIM Societies organize local confer-
ences, and EUROSIM co-operates with the organizers of 
I3M Conference and WinterSim Conference Series. 
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EUROSIM Member Societies 
ASIM 
German Simulation Society 
Arbeitsgemeinschaft Simulation 

ASIM is the association for simulation in the German 
speaking area, servicing mainly Germany, Switzerland 
and Austria. 

President Felix Breitenecker,  
felix.breitenecker@tuwien.ac.at 

Vice President Sigrid Wenzel,  
s.wenzel@uni-kassel.de 
Thorsten Pawletta,  
thorsten.pawletta@hs-wismar.de 
Andreas Körner,  
andreas.koerner@tuwien.ac.at 

ASIM is organising / co-organising the following interna-
tional conferences: ASIM SPL Int. Conference ‘Simula-
tion in Production and Logistics’ (biannual), ASIM SST 
‘Symposium Simulation Technique’  (biannual), MATH-
MOD Int. Vienna Conference on Mathematical Model-
ling (triennial). Furthermore, ASIM is co-sponsor of WSC 
- Winter Simulation Conference and of the I3M and con-
ference series. 

ASIM Working Committees 
GMMS: Methods in Modelling and Simulation 
      U. Durak, umut.durak@dlr.de 
SUG: Simulation in Environmental Systems 
   J. Wittmann, wittmann@informatik.uni-hamburg.de 
STS: Simulation of Technical Systems 
   W. Commerell, commerell@hs-ulm.de 
SPL: Simulation in Production and Logistics 
   S. Wenzel, s.wenzel@uni-kassel.de 
EDU: Simulation and Education 
   A. Körner, andreas.koerner@tuwien.ac.at 
Working Group Big Data: Data-driven Simulation in 
   Life Sciences, N. Popper, niki.popper@dwh.at 
Other Working Groups: Simulation in Business Admin-
istration, in Traffic Systems, for Standardisation, etc. 

Contact Information 
 www.asim-gi.org 
 info@asim-gi.org, admin@asim-gi.org 

 ASIM – Inst. of Analysis and Scientific Computing, 
TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, 
Austria 

CEA-SMSG – Spanish Modelling and 
Simulation Group 
CEA is the Spanish Society on Automation and Control. 
The association is divided into national thematic groups, 
one of which is centered on Modeling, Simulation and 
Optimization (CEA-SMSG). 

President José L. Pitarch, jlpitarch@isa.upv.es 

Vice President Juan Ignacio Latorre,  
juanignacio.latorre@unavarra.es 

Contact Information 
 www.ceautomatica.es/grupos/ 
 simulacion@cea-ifac.es 
 CEA-SMSG / Emilio Jiménez, Department of Electri-

cal Engineering, University of La Rioja, San José de 
Calasanz 31, 26004 Logroño (La Rioja), Spain 

 

CSSS – Czech and Slovak 
Simulation Society 

CSSS is the Simulation Society with members from the two 
countries: Czech Republic and Slovakia. The CSSS history 
goes back to 1964. 

President Michal Štepanovský 
michal.stepanovsky@fit.cvut.cz 

Vice President Mikuláš Alexík, alexik@frtk.fri.utc.sk 

Contact Information 

 cssim.cz 

 michal.stepanovsky@fit.cvut.cz 

 CSSS – eský a Slovenský spolek pro simulaci 
systém , Novotného lávka 200/5,  
11000 Praha 1, eská republika 

 

DBSS – Dutch Benelux  
Simulation Society 

The Dutch Benelux Simulation Society (DBSS) was 
founded in July 1986 in order to create an organisation of 
simulation professionals within the Dutch language area. 

President M. Mujica Mota,  
m.mujica.mota@hva.nl 

Vice President A. Heemink,  
a.w.heemink@its.tudelft.nl 

Secretary P. M. Scala, paolo.scala@fedex.com 
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Contact Information 
 www.DutchBSS.org 

 a.w.heemink@its.tudelft.nl 

 DBSS / A. W. Heemink, Delft University of Technol-
ogy, ITS – twi, Mekelweg 4, 2628 CD Delft, The 
Netherlands 

KA-SIM Kosovo Simulation Society 
The Kosova Association for Modeling and Simulation 
(KA-SIM) is closely connected to the University for Busi-
ness and Technology (UBT) in Kosovo. 
 
President Edmond Hajrizi, ehajrizi@ubt-uni.net 

Vice President Muzafer Shala, info@ka-sim.com 

Contact Information 
 www.ubt-uni.net 
 ehajrizi@ubt-uni.net 
 Dr. Edmond Hajrizi 

Univ. for Business and Technology (UBT) 
Lagjja Kalabria p.n., 10000 Prishtina, Kosovo 

 
 

 
LIOPHANT Simulation 

LIOPHANT Simulation is a non-profit association born in 
order to be a trait-d'union among simulation developers 
and users; LIOPHANT is devoted to promote and diffuse 
the simulation techniques and methodologies; the Asso-
ciation promotes exchange of students, sabbatical years, 
organization of International Conferences, courses and 
internships focused on M&S applications. 

 
President A.G. Bruzzone, agostino@itim.unige.it 

Director E. Bocca, enrico.bocca@liophant.org 

Contact Information 
 www.liophant.org 
 info@liophant.org 
 LIOPHANT Simulation, c/o Agostino G. Bruzzone, 

DIME, University of Genoa, Savona Campus, via 
Molinero 1, 17100 Savona (SV), Italy 

 

LSS – Latvian Simulation Society 
The Latvian Simulation Society (LSS) has been founded 
in 1990 as the first professional simulation organisation 
in the field of Modelling and simulation in the post-So-
viet area. 

President Artis Teilans, Artis.Teilans@rta.lv 

Vice President Oksana Kuznecova,  
Oksana.Kuznecova@rtu.lv 

Contact Information 
 www.itl.rtu.lv/imb/ 
 Artis.Teilans@rta.lv, Egils.Ginters@rtu.lv 
 LSS, Dept. of Modelling and Simulation, Riga Tech-

nical University, Kalku street 1, Riga, LV-1658, Latvia 

 

 

NSSM – National Society for 
Simulation Modelling (Russia) 

NSSM – The National Society for Simulation Modelling 
(    -

 – ) was officially registered in Russia in 
2011. 

President R. M. Yusupov, yusupov@iias.spb.su 

Chairman A. Plotnikov, plotnikov@sstc.spb.ru 

Contact Information 
 www.simulation.su 
 yusupov@iias.spb.su 
 NSSM / R. M. Yusupov, St. Petersburg Institute of In-

formatics and Automation RAS, 199178, St. Peters-
burg, 14th line, h. 39 

PTSK – Polish Society for Computer 
Simulation 
PTSK is a scientific, non-profit association of members 
from universities, research institutes and industry in Po-
land with common interests in variety of methods of 
computer simulations and its applications. 

President Tadeusz Nowicki,  
Tadeusz.Nowicki@wat.edu.pl 

Vice President Leon Bobrowski, leon@ibib.waw.pl 

Contact Information 
 www.ptsk.pl 
 leon@ibib.waw.pl 
 PSCS, 00-908 Warszawa 49, ul. Gen. Witolda Ur-

banowicza 2, pok. 222 
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SIMS – Scandinavian Simulation Society 
SIMS is the Scandinavian Simulation Society with mem-
bers from the five Nordic countries Denmark, Finland, 
Norway, Sweden and Iceland. The SIMS history goes 
back to 1959. 

President Tiina Komulainen,  
tiina.komulainen@oslomet.no 

Vice President Erik Dahlquist, erik.dahlquist@mdh.se 

Contact Information 
 www.scansims.org 
 vadime@wolfram.com 
 Vadim Engelson, Wolfram MathCore AB,  

Teknikringen 1E, 58330, Linköping, Sweden 
 

 

SLOSIM – Slovenian Society 
for Simulation and Modelling 

The Slovenian Society for Simulation and Modelling was 
established in 1994. It promotes modelling and simula-
tion approaches to problem solving in industrial and in 
academic environments by establishing communication 
and cooperation among corresponding teams. 

President Goran Andonovski,  
goran.andonovski@fe.uni-lj.si 

Vice President Božidar Šarler,  
bozidar.sarler@fs.uni-lj.si 

Contact Information 
 www.slosim.si 
 slosim@fe.uni-lj.si, vito.logar@fe.uni-lj.si 

 SLOSIM, Fakulteta za elektrotehniko, Tržaška 25, 
SI-1000, Ljubljana, Slovenija 

UKSIM - United Kingdom Simulation Society 
The UK Modelling & Simulation Society (UKSim) is the 
national UK society for all aspects of modelling and sim-
ulation, including continuous, discrete event, software 
and hardware. 

President David Al-Dabass,  
david.al-dabass@ntu.ac.uk 

Secretary T. Bashford, tim.bashford@uwtsd.ac.uk 

 

Contact Information 
 uksim.info 
 david.al-dabass@ntu.ac.uk 
´ UKSIM / Prof. David Al-Dabass, Computing & Infor-

matics, Nottingham Trent University, Clifton lane, 
Nottingham, NG11 8NS, United Kingdom 

Observer Members 

ROMSIM – Romanian Modelling and 
Simulation Society 
ROMSIM has been founded in 1990 as a non-profit soci-
ety, devoted to theoretical and applied aspects of model-
ling and simulation of systems. 

Contact Information 
 florin_h2004@yahoo.com 
 ROMSIM / Florin Hartescu, National Institute for Re-

search in Informatics, Averescu Av. 8 – 10, 011455 
Bucharest, Romania 

ALBSIM – Albanian Simulation Society 
The Albanian Simulation Society has been initiated at the 
Department of Statistics and Applied Informatics, Fac-
ulty of Economy at the University of Tirana, by Prof. Dr. 
Kozeta Sevrani. 

Contact Information 

 kozeta.sevrani@unitir.edu.al 

 Albanian Simulation Goup, attn. Kozeta Sevrani, Uni-
versity of Tirana, Faculty of Economy , rr. Elbasanit,  
Tirana 355,  Albania 

Former Societies / Societies in  
Re-organisation 
• CROSSIM – Croatian Society for Simulation  

Modelling  
Contact: Tarzan Legovi , Tarzan.Legovic@irb.hr 

• FrancoSim – Société Francophone de Simulation 
• HSS – Hungarian Simulation Society 

Contact: A. Gábor,  andrasi.gabor@uni-bge.hu 
• ISCS – Italian Society for Computer Simulation 

The following societies have been formally terminated: 
• MIMOS –Italian Modeling & Simulation Association; 

terminated end of 2020. 
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ARGESIM is a non-profit association generally aiming for 
dissemination of information on system simulation – 
from research via development to applications of system 
simulation. ARGESIM is closely co-operating with EU-
ROSIM, the Federation of European Simulation Societies, 
and with ASIM, the German Simulation Society. 
ARGESIM is an 'outsourced' activity from the Mathemat-
ical Modelling and Simulation Group of TU Wien, there 
is also close co-operation with TU Wien (organisationally 
and personally). 

       www.argesim.org 

   office@argesim.org 

 ARGESIM/Math. Modelling & Simulation Group,  
       Inst. of Analysis and Scientific Computing, TU Wien 
       Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria 
      Attn. Prof. Dr. Felix Breitenecker 

ARGESIM is following its aims and scope by the follow-
ing activities and projects: 
• Publication of the scientific journal SNE –  

Simulation Notes Europe (membership journal of 
EUROSIM, the Federation of European Simulation 
Societies) – www.sne-journal.org 

• Organisation and Publication of the ARGESIM 
Benchmarks for Modelling Approaches and Simu-
lation Implementations 

• Publication of the series ARGESIM Reports for  
monographs in system simulation, and proceedings 
of simulation conferences and workshops 

• Publication of the special series  FBS Simulation – 
Advances in Simulation / Fortschrittsberichte Simu-
lation - monographs in co-operation with ASIM, 
the German Simulation Society 

• Support of the Conference Series MATHMOD  
Vienna (triennial, in co-operation with EUROSIM, 
ASIM, and TU Wien) – www.mathmod.at 

• Administration of ASIM (German Simulation Soci-
ety) and administrative support for EUROSIM 
www.eurosim.info 

• Simulation activities for TU Wien 

ARGESIM is a registered non-profit association and a reg-
istered publisher: ARGESIM Publisher Vienna, root ISBN 
978-3-901608-xx-y and 978-3-903347-xx-y, root DOI 
10.11128/z…zz.zz. Publication is open for ASIM and for 
EUROSIM Member Societies. 

 

SNE – Simulation 
Notes Europe  

 
The scientific journal SNE – Simulation Notes Europe 
provides an international, high-quality forum for presen-
tation of new ideas and approaches in simulation – from 
modelling to experiment analysis, from implementation 
to verification, from validation to identification, from nu-
merics to visualisation – in context of the simulation pro-
cess. SNE puts special emphasis on the overall view in 
simulation, and on comparative investigations. 
Furthermore, SNE welcomes contributions on education 
in/for/with simulation. 

 
SNE is also the forum for the ARGESIM Benchmarks 

on Modelling Approaches and Simulation Implementa-
tions publishing benchmarks definitions, solutions, re-
ports and studies – including model sources via web. 

 

SNE Editorial Office /ARGESIM     

www.sne-journal.org 
   office@sne-journal.org, eic@sne-journal.org 

       Johannes Tanzler (Layout, Organisation) 
       Irmgard Husinsky (Web, Electronic Publishing) 
       Felix Breitenecker EiC (Organisation, Authors) 
       ARGESIM/Math. Modelling & Simulation Group,  
       Inst. of Analysis and Scientific Computing, TU Wien 
       Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria 
 
SNE, primarily an electronic journal, follows an open ac-
cess strategy, with free download in a basic version 
(B/W, low resolution graphics). SNE is the official mem-
bership journal of EUROSIM, the Federation of European 
Simulation Societies. Members of (most) EUROSIM Soci-
eties are entitled to download the full version of e-SNE 
(colour, high-resolution graphics), and to access addi-
tional sources of benchmark publications, model sources, 
etc. (group login for the ‘publication-active’ societies; 
please contact your society). Furthermore, SNE offers EU-
ROSIM Societies a publication forum for post-conference 
publication of the society’s international conferences, 
and the possibility to compile thematic or event-based 
SNE Special Issues. 

 

Simulationists are invited to submit contributions of 
any type – Technical Note, Short Note, Project Note, Edu-
cational Note, Benchmark Note, etc. via SNE’s website: 

       www.sne-journal.org, 



www.sne-journal.org

www.argesim.org

Preliminary Announcement

Save the date

ASIM 2024

27. Symposium Simulationstechnik

4. - 6. September 2024

The scope of the ASIM Symposium Simulationstechnik – also including the workshop of the working

groups GMMS, STS, and EDU – covers basics, methods, and tools of modeling and simulation as well as

all areas of application (from engineering sciences to computer science, production and logistics, bio-,

environmental and geosciences, climate and ecosystem, up to training and education in modeling and

simulation.

The Scientific Programme of ASIM 2024 includes Invited Lectures, Contributed Lectures in parallel

sessions, and Tutorials. Of course a Social Programme will be organized.

Conference languages are German and English.

More information will be available soon at: www.asim-gi.org


