
S N E T E C H N I C A L N O T E

Bojan Lukić1* , Jasper Sprockhoff1 , Alexander Ahlbrecht1 , Siddhartha Gupta1 ,

Umut Durak1

1German Aerospace Center (DLR), Institute of Flight Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany
*bojan.lukic@dlr.de

SNE 33(4), 2023, 183- , DOI: 10.11128/sne.33.tn.10666

Selected ASIM WS 2023 Postconf. Publication: 2023-10-15

Rec. Revised Improved: 2023-11-30; Accepted: 2023-12-06

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

The development of Artificial Intelligence (AI)
based systems is becoming increasingly prominent in
various industries. The aviation industry is also gradually
adopting AI-based systems. An example could be using
Machine Learning algorithms for flight assistance. There
are several reasons why adopting these technologies
poses additional obstacles in aviation compared to other
industries. One reason is strong safety requirements,
which lead to obligatory assurance activities such as thor-
ough testing to obtain certification. Amongst many other
technical challenges, a systematic approach is needed for
developing, deploying, and assessing test cases for AI-
based systems in aviation.

This paper proposes a method for iterative scenario-
based testing for AI-based systems. The method con-
tains three major parts: First, a high-level description of
test scenarios; second, the generation and execution of
these scenarios; and last, monitoring of scenario param-
eters during scenario execution. The scenario parame-
ters, which can be for instance environmental or system
parameters, are refined and the test steps are executed
iteratively. The method forms a basis for developing iter-
ative scenario-based testing solutions.

As a domain-specific example, a practical implemen-
tation of this method is illustrated. For an object detec-
tion application used on an airplane, flight scenarios, in-
cluding multiple airplanes, are generated from a descrip-
tive scenario model and executed in a simulation envi-
ronment. The parameters are monitored using a cus-
tom Operational Design Domain monitoring tool and re-
fined in the process of iterative scenario generation and
execution. The proposed iterative scenario-based test-
ing method helps in generating precise test cases for AI-
based systems while having a high potential for automa-
tion.

The practical use of Machine Learning (ML) applica-

tions for Artificial Intelligence (AI) based systems in

aviation is still in an early stage. One reason is the

premature nature of guidelines illustrating the proper

implementation of those applications. Specifically, the

additional and strict requirements and constraints for

introducing new systems in the aviation industry pose

an obstacle. This makes the implementation and cer-

tification of ML algorithms for autonomy challeng-

ing. Recently, the European Union Aviation Safety

Agency (EASA) [1] and Society of Automotive Engi-

neers (SAE) [2] each published early versions of fun-

damental guidelines, discussing the implementation of

ML applications in aeronautical systems. These guide-

lines provide requirements to support the integration of

ML-enabled sub-systems and guidance for implement-

ing ML applications. Due to the premature nature of

these guidelines, the certifiability of ML applications in

aviation, especially for fully AI-based systems, is not

yet given. Yet, similar to traditional software, it is cer-

tain that specific verification artifacts need to be pro-

vided to increase trust. Typical artifacts include the re-

sults of conducted tests.

As defined in the EASA guidance, implementing

AI-based systems requires the exact definition of their

Operational Design Domain (ODD). The ODD defines

the conditions under which a system operates correctly.

Specifically, the ODD outlines the operating parame-

ters, encompassing the range and distribution in which

the AI/ML component is intended to function. It will

function as intended only when the specified parame-

ters within the ODD are met.

SNE 33(4) – 12/2023



Lukic et al. Iterative Scenario-Based Testing in AI-based Based Systems in Aviation

Moreover, the ODD takes into account interde-

pendencies among operating parameters to adjust the

ranges as necessary. This means that the ranges for one

or more operating parameters may be contingent upon

the value or range of another parameter [1, 3]. The def-

inition of parameter boundaries for the correct behavior

of an AI-based system becomes especially important

when working in safety-critical domains such as avia-

tion. For instance, the ODD of an aviation system can

help with the definition of design assurance levels [4].

In this context, the definition of the system’s ODD sup-

ports the generation of precise test cases for high test

coverage.

One systematic approach for developing test cases

for AI-based systems in their operational domain is

model-based testing using the Model-Based Systems

Engineering (MBSE) methodology. Due to its highly

descriptive nature and model-centric approach [5],

MBSE is an appropriate methodology to model sys-

tems on system and item level, making it useful in the

development process of test cases for ML applications

[6]. The concepts presented in the work at hand are,

amongst others, exemplified by methods from MBSE.

This paper discusses the generation of test scenar-

ios for an AI-based system. The use case is applying a

computer vision algorithm to perform object detection

and predict dangerous situations. The scenarios repre-

sent different situations with foreign airplanes used for

testing. The detailed use case is explained in [7]. A

method for iterative scenario-based testing of AI-based

systems is presented in the scope of this work. Three

essential parts of the method are defined: A high-level

description of the scenarios to be executed, the testing

environment in which test scenarios are executed, and

a monitoring tool for defining the parameter boundaries

for the ODD of the respective system. A prototypical

implementation of this methodology is also presented.

For modeling the systems involved and developing test

cases, the MBSE tool Cameo1 is used.

The simulation is executed in FlightGear, a highly

customizable open-source software for flight simula-

tion2. The scenarios are generated in a model-based

approach in Cameo and then executed in a FlightGear

instance. Parameters are monitored using a custom

Python library.

1Dassault Systemes, 2022, Cameo Systems Modeler, available at

https://www.3ds.com/products-services/catia/
products/no-magic/cameo-systems-modeler/.

2FlightGear developers & contributors, 2021. FlightGear, Available at

https://www.flightgear.org/.

The findings show that the iterative scenario-based

testing method facilitates the definition and refinement

of test scenarios for AI-based applications.

The remaining paper is structured as follows:

In Section 1, related work and the status quo of

scenario-based testing with a model-based approach

are discussed. Section 2 presents the development of

a domain-independent method for iterative scenario-

based testing. The implementation of this methodology

is presented in Section 3 with tools used for defining

scenarios, executing them, and monitoring them.

In [8], Jafer and Durak discuss the complexity of sim-

ulation scenario development in aviation. They pro-

pose ontology-based approaches to develop an avia-

tion scenario definition language (ASDL). According

to the authors, ontologies provide invaluable possibil-

ities to tackle the complexity of simulation scenario de-

velopment. Durak presents a model-driven engineering

perspective for scenario development in [9]. The use

of metamodels for generating executable scenarios is

demonstrated with a sample implementation. Durak’s

work is closely related to the research presented in the

work at hand, specifically the development of metamod-

els for generating executable scenarios.

Simulation-based data and scenario generation for

AI-based airborne systems is discussed by Gupta in

[10]. In the work, the authors aim to answer the ques-

tion of what needs to be simulated for synthetic data

and scenario generation in the simulation engineering

process of an AI-based system. The used methods are a

simulation-based data generation process adapted from

EASA’s first usable guidance for Level 1 machine learn-

ing applications and the scenario-based approach us-

ing SES, which is explained more thoroughly in the

publications of Durak [11], [12] as well as Karmokar

[13]. The work in [10] is succeeded with [14], which

discusses behavioral modeling for scenario-based test-

ing in aviation and introduces an enhanced approach

for scenario-based testing called Operational Domain

Driven Testing.

Closely related, [15] demonstrates the testing of

black box systems, such as AI-based applications for

autonomous road vehicles, in their ODD. The frame-

work introduced by the authors is used to learn monitors

in a feature space and prevent the system from using

critical components when exiting its ODD.

SNE 33(4) – 12/2023



Lukic et al. Iterative Scenario-Based Testing in AI-based Based Systems in Aviation

Scenario-based testing of autonomous road vehicles

is discussed in [16] and [17]. The authors present an

automated scenario-based testing methodology for ve-

hicles using advanced AI-based applications. The work

shows that the presented formal simulation approach ef-

fectively finds relevant tests for track testing with a real

autonomous vehicle.

In [18], Hungar introduces scenario-based testing

for automated road vehicles. The outcome of later itera-

tions [19] is the PEGASUS method, which is used to as-

sess highly automated driving functions. According to

the author, the most important steps for scenario-based

testing involve capturing all evolutions, i.e. variants, of

functional scenarios, formalization of them, systematic

testing, the analysis of critical regions, and finally, the

development of a risk chart.

Closely related to [9], the work presented in this pa-

per discusses model-driven scenario development. In

addition to the methodologies discussed in the related

work, an iterative scenario parameter adjustment and

generation process is introduced, forming the iterative

scenario-based testing method. The method is illus-

trated with an exemplary generation of test scenarios

for an AI-based demonstrator. In the next section, the

methodology for this domain- and tool-independent it-

erative scenario-based testing method is presented.

The related work shows that there are many ways to re-

alize scenario-based testing for AI-based systems. Es-

pecially when talking about domain-specific tools, a va-

riety of testing strategies are possible. A generalization

of these testing strategies can help with defining uni-

versal testing methods. To achieve that, a fundamental,

tool-independent method is needed to describe the ba-

sic methodology for iterative scenario-based testing on

a high level of abstraction. This method can then be

used to build some domain-specific testing tools. For

such iterative scenario-based testing, three fundamental

components have been identified:

First, a high-level description of the testing scenar-

ios needs to be defined. This high-level model can

be achieved by describing the scenarios’ fundamental

components. Modeling tools or formalized methods can

for instance be used to formulate the scenarios and de-

rive all required scenario variations from the high-level

model. The method shall be capable of generating an

arbitrary number of scenarios with high parameter vari-

ation from the high-level description to achieve satis-

factory test coverage for the application to be verified.

Second, an environment for executing the derived sce-

narios should be selected. The environment can be of

different types, such as simulated, real system, or a mix

of both, e.g. real systems extended with elements from

augmented reality. These environments have different

advantages and disadvantages. A simulated system can

be deployed quickly, offers consistent conditions, and is

cost-effective. The biggest drawback of simulated envi-

ronments is their sim-to-real gap. The gap refers to the

applicability of simulations to real-life environments, as

many simulated environments cannot fully offer all rel-

evant conditions as a real system. The biggest advan-

tage of a real system is its smaller domain gap to the

real-life environment in which the tested application is

designed to operate in. Real systems are hard to deploy

and costly. Especially when talking about automated

and accelerated testing, real systems can pose a finan-

cial and temporal bottleneck in the testing process.

Last, a monitoring tool is required for verification and

for tracking all parameters that are necessary for and

can have some variance on scenarios. By tracking these

parameters and verifying the application to be tested, a

precise ODD can be defined for the system. With feed-

back from the monitoring tool, parameters can be ad-

justed, or new values for the parameters can be chosen

for a new iteration of scenario generation. The tools

qualifying for monitoring, in the chain of scenario-

based testing, are arbitrary. They merely need to be

capable of monitoring parameters in real-time for syn-

chronization purposes. The described method is of an

iterative nature. Each component feeds the next with

some information. This loop is depicted in Figure 1.

The execution of test scenarios can be accomplished

in a simulated environment as well as with a real sys-

tem. Although both approaches are important to con-

sider, the method depicted in Figure 1 is tailored to-

wards testing in simulated environments. For generat-

ing application-readable scenario descriptions with the

scenario modeling tool, some application, e.g. script,

SNE 33(4) – 12/2023



Lukic et al. Iterative Scenario-Based Testing in AI-based Based Systems in Aviation

scenario
generation

scenario
exection

ITERATIVE
SCENARIO-BASED

TESTING

ODD monitoring

Descriptive
scenarios

Scenario
model

parameter
adjustment

Figure 1: Iterative scenario-based testing

is needed. Similarly, after scenario execution and mon-

itoring, some application is needed that feeds the re-

sult logs to the scenario modeling tool, decides on pa-

rameter adjustment, and triggers new scenario gener-

ation. The use of such intermediate applications and

scripts enables high automation and optimization of the

method. In ideal circumstances, the iterative scenario-

based testing method forms a closed loop with auto-

mated test scenario generation, execution, and real-time

monitoring of parameters.

This section explains an exemplary implementation to

demonstrate the derived method. For the implemen-

tation, domain-specific tools were selected that can be

exchanged depending on the use case. The exemplary

implementation of the discussed method can be divided

into three components: First, the MBSE-based scenario

description and generation using Cameo; second, the

execution of scenarios defined in generated XML files

with the flight simulator FlightGear; and last, the mon-

itoring of parameters during scenario execution with a

custom ODD monitoring tool. The basic flow of infor-

mation and the steps are illustrated in Figure 2.

The high-level model of the scenarios is described

with a profile diagram in Cameo. Profile diagrams are

<<allocate>>
Cameo

<<allocate>>
FlightGear

<<allocate>>
ODD Monitoring Tool

Create scenario
model

Generate scenario
instance

Generate scenario
files

Execute
scenarios

Peform ODD
monitoring

Parameter adjustments

Flow of information and steps for iterative
scenario-based testing used in this work

defined in the System Modeling Language (SysML).

Additionally, extensions are used to increase the mod-

eling capabilities with profile diagrams.

One configuration of a specific scenario is generated

with a block definition diagram, which can be trans-

formed and exported into the desired XML scenario

files with the help of scripts. XML files are gener-

ated for the use case on hand since FlightGear uses an

XML format for the scenario definition. However, other

domain-specific formats can be used as well. The sce-

narios are executed within an instance of FlightGear. A

more detailed description of the implementation is pro-

vided in the following subsections.

A high-level description of the necessary files for sce-

nario execution is displayed in Figure 3. Along with

scenario files, flight plan files are needed for scenario

execution.

The scenario files include various tags which de-

fine the inputs, objects, and attributes when executing

them in FlightGear. An important tag is the <entry> tag

which defines objects used in a scenario and can include

the following additional tags: <callsign> – the identifi-

cation of the airplane, <type> and <model>, <flight-
plan> – the flight plan which the scenario refers to,

SNE 33(4) – 12/2023



Lukic et al. Iterative Scenario-Based Testing in AI-based Based Systems in Aviation

High-level description of the configuration files for
FlightGear

class – the class of airplane, and <repeat> – a Boolean

flag that indicates whether the scenario is executed once

or repeated infinitely often.

The flight plans, which the scenario files refer to,

are also in XML format. The flight plan contains the

<wpt> tag, which can include the following additional

tags: <name> – the name of the waypoint, <lat> –

the latitude of the entry that refers to the flight plan,

<lon> – the longitude, <alt> – the altitude, <ktas> –

the knots true airspeed, <on-ground> – if the specified

object starts from the ground or not, <gear-down> – if

the landing gear is retracted or extended, and <flaps-
down> – for retracting or extending the flaps. Flight-

Gear offers many more configuration files which can be

adjusted to change environmental parameters as well as

parameters of entities and other components of inter-

est for scenario-based testing. For simplicity, only the

scenario and flight plan files along with their parame-

ters are discussed here. Some high-level description,

i.e. metamodel, of the scenario and flight plan files is

needed to generate arbitrary test scenarios.

Figure 4 depicts one instance of the high-level de-

scription of the scenario and flight plan files.

The scenarios are executed within FlightGear. The re-

spective scenarios, in their descriptive XML format, can

be executed manually in a FlightGear instance, or re-

ferred to as parameters for automatic execution with

Block definition diagram of one scenario and flight
plan configuration

startup of FlightGear. For automation purposes, we

chose the latter. As explained in the previous subsec-

tion, one or more entries, e.g. planes, can be defined in

a scenario file, with each flying according to a prede-

fined route.

In this instance, one passenger airplane is defined,

which narrowly passes the user’s plane. Both planes are

flying towards each other. Figure 5 shows a screenshot

of the scenario during execution in FlightGear.

Several parameters can have a variance on the scenar-

ios executed in FlightGear, some of which were defined

above.

SNE 33(4) – 12/2023



Lukic et al. Iterative Scenario-Based Testing in AI-based Based Systems in Aviation

Passenger airplane narrowly passing user’s Cessna

For a complete ODD definition, a dditional param-

eters, apart from the ones presented above, need to be

considered. One example is environmental parameters

such as weather conditions. The more operational pa-

rameters are considered within the ODD, the higher the

test coverage of the scenarios and the narrower the sim-

to-real gap. Naturally, parameters should be chosen

based on their impact on the scenarios, and therefore the

ODD. A high-level description of the domain model for

the ODD of the AI-based system used on an airplane is

depicted in Figure 6.

Domain model for the ODD of the scenario-based
testing method

The parameter boundaries for the use case of object

detection during scenario execution can be determined

in an iterative process. Due to the high number of pa-

rameters to be considered, a manual exhaustive search

for parameter boundaries is highly time-consuming.

Therefore, some tool is needed which can track

the necessary parameters during scenario execution and

give feedback on the result of the tested application.

For monitoring these parameters in FlightGear, a

public Python library3 for fetching parameters from

FlightGear’s property tree is used. The AI-based system

tested in this example is an object detection application.

The result of the object detection, within the operational

domain, and desired parameters can be logged using the

monitoring tool. The feedback generated from the tool

can then be used to adjust the values of selected pa-

rameters in Cameo according to the ODD boundaries,

generate new scenarios, and redefine the ODD of the

application. This iterative process can be used to de-

fine the ODD boundaries of each parameter with every

iteration.

A simplified ODD for the system with the two pa-

rameters altitude and speed can be defined as follows:

“The application performs correct object detection of

intruding airplanes of type Boeing 737 within follow-

ing parameter boundaries:

• Altitude of intruding airplane relative to own air-

plane in feet, Δ alt: -100 to 100.

• Cumulative speed of intruding airplane as well as

own airplane in knots true airspeed, Σ ktas: 0 to

500.”

Table 1 shows an exemplary log recorded during ex-

ecution of a scenario in FlightGear.

Log # lat lon Δ alt Σ ktas detect

1 63.970 -22.65 100 400 no
2 63.974 -22.65 100 399 no
3 63.978 -22.65 100 400 no
4 63.982 -22.65 100 399 yes
5 63.986 -22.65 100 400 yes
6 63.990 -22.65 100 403 yes
7 63.994 -22.65 100 399 no
8 63.998 -22.65 100 400 no

Exemplary log of parameters monitored during
scenario execution in FlightGear.

For completeness and to reflect other relevant pa-

rameters currently covered in the scenario model, the

3Munyakabera Jean Claude, 2022. flightgear_interface, Available

at: https://github.com/ironmann250/flightgear_
interface

SNE 33(4) – 12/2023



Lukic et al. Iterative Scenario-Based Testing in AI-based Based Systems in Aviation

latitude and longitude of the intruding airplane are

logged along with the aforementioned altitude and

speed.

The table shows that successful object detection is

on hand for logs four to six. Therefore, the predefined

ODD holds for the combination of parameters on hand.

Now, single parameters can be adjusted for a potential

revaluation of the predefined ODD. In this case, the al-

titude of the intruding airplane relative to the own air-

plane is increased by 100 feet. First, a scenario with a

new configuration of attributes needs to be generated,

similar to the one depicted in Figure 4. In this case, the

altitude is adjusted to reflect the definition for the new

test case. Lastly, the necessary XML files are generated

from the configuration model.

Now, scenario execution in FlightGear and parame-

ter monitoring can be performed. Table 2 shows the log

for the second iteration of parameter monitoring.

Log # lat lon Δ alt Σ ktas detect

1 63.970 -22.65 200 400 no
2 63.974 -22.65 200 399 no
3 63.978 -22.65 200 401 yes
4 63.982 -22.65 200 400 yes
5 63.986 -22.65 200 400 yes
6 63.990 -22.65 200 400 no
7 63.994 -22.65 200 400 no
8 63.998 -22.65 200 400 no

Exemplary log of parameters monitored during
scenario execution in FlightGear.

As shown in the second table, the object detection is

successful for logs three to five. The predefined ODD

still holds for the combination of parameters on hand.

However, the ODD can now be adjusted and phrased

more precisely in line with the altered parameter. The

ODD for the application can therefore be rephrased as

follows:

“The application performs correct object detection of

intruding airplanes of type Boeing 737 within following

parameter boundaries:

• Altitude of intruding airplane relative to own air-

plane in feet, Δ alt: -100 to 200.

• [...]”

the changes in detection performance drop below

some predefined threshold and a sufficiently precise ODD

has been determined. Note that precision does not refer

to some performance measure, but rather to the perceived

precision which is currently chosen arbitrarily.

The exemplary implementation of model-based

scenario generation and ODD monitoring in this

section follows the method presented in Figure 1.

Domain-specific tools utilizing Cameo, XML files, and

a Python application were used to build a framework

for iterative scenario-based testing.

The implementation can be seen as a minimal

working example, demonstrating the iterative

scenario-based testing method explained in Section 2.

The implementation can be developed further to allow

for closed-loop scenario-based testing with automated

scenario generation, execution, and monitoring.

The use of ML applications in systems such as

airplanes is steadily increasing. The thorough

testing of these systems is a fundamental part of their

development process. Certain industries, such as

aviation, impose strict requirements and constraints for

the use of AI-based applications, increasing the testing

efforts required to cer-tify and use these applications.

Additionally, ML applications are often con

sidered a black box. Therefore, black box testing

methods need to be put in place that are as rigorous as

current testing methods for common software systems.

SNE 33(4) – 12/2023



Lukic et al. Iterative Scenario-Based Testing in AI-based Based Systems in Aviation

airplane. For this purpose, a scenario-based testing

loop was developed, including the three steps of

generating application-readable scenario descriptions

from models, execution of these scenarios, and para

meter mon-itoring with model parameter adjustments.

In addition to generating arbitrary test cases, the pre-

sented method illustrates the approximation of bound-

aries for the ODD of the ML application with iterative

parameter adjustments.

This method can be further optimized by connecting

its components, i.e. the high-level scenario description,

scenario execution, and ODD monitoring, and creating

a closed loop with automated scenario generation, exe-

cution, and parameter adjustment.

Additionally, test oracles that determine the success

or failure of individual tests should be investigated. The

granularity of test cases, i.e. only success and failure

evaluations or more finely-grained evaluations, is im-

portant. These findings will be investigated in future

research.

EASA. EASA Artificial Intelligence concept pa-per -
proposed Issue 2. Tech. rep. Feb. 2023. URL: https://
www.easa.europa.eu/en/downloads/137631/
en.

EUROCAE WG-114/SAE and G-34 Artificial In-telligence

Working Group. Artificial Intelligence in Aeronautical
Systems: Statement of Concerns. SAE International. Apr.

2021. DOI: https://doi.org/10.4271/AIR6988.

On-Road Automated Driving (ORAD) Commit-tee.
Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Mo-tor Vehicles. Standard.

SAE International, Apr. 2021. DOI: https://
doi.org/10.4271/J3016_202104.

DO-178C - Software Considerations in Airborne Systems and
Equipment Certification. Standard. RTCA, Dec. 2011.

URL: https://www. do178.org/.

A. Wayne Wymore. Model-Based Systems Engi-neering.

1993. ISBN: 9780203746936. DOI: 10.
1201/9780203746936.

Azad M. Madni. “MBSE Testbed for Rapid, Cost-Effective

Prototyping and Evaluation of System Modeling

Approaches”. In: Applied Sciences 11.5 (2021). ISSN:

2076-3417. DOI: 10 . 3390 /app11052321.

Jasper Sprockhoff et al. “Model-Based Systems Engineering

for AI-Based Systems”. In: AIAA SCITECH 2023 Forum.

Jan. 2023. DOI: 10 . 2514/6.2023-2587.

Shafagh Jafer and Umut Durak. “Tackling the Complexity

of Simulation Scenario Development in Aviation”. In:
Proceedings of the Symposium on Modeling and Simulation of
Complexity in Intel-ligent, Adaptive and Autonomous
Systems. 2017. ISBN: 9781510840300.

Umut Durak et al. “Scenario Development: A Model-

Driven Engineering Perspective”. In: 4th International
Conference on Simulation and Mod-eling Methodologies,
Technologies and Applica-tions. 2014, pp. 117–124. URL:

https : / /elib.dlr.de/94626/.

Siddhartha Gupta et al. “From Operational Scenar-ios to

Synthetic Data: Simulation-Based Data Gen-eration for AI-

Based Airborne Systems”. In: AIAA SCITECH Forum. Jan.

2022. DOI: 10.2514/6. 2022-2103.

Umut Durak et al. “Using System Entity Struc-tures to

Model the Elements of a Scenario in a Re-search Flight

Simulator”. In: AIAA Modeling and Simulation Technologies
Conference. 2017. URL: https://
elib.dlr.de/112664/.

Umut Durak et al. “Computational Representation for a

Simulation Scenario Definition Language”. In: Modeling and
Simulation Technologies Confer-ence. 2018. DOI:

10.2514/6.2018-1398.

Bikash Chandra Karmokar et al. “Tools for Sce-nario

Development Using System Entity Struc-tures”. In: AIAA
Scitech Forum, 2019. 2019. DOI: 10.2514/6.2019-1712.

Siddhartha Gupta and Umut Durak. “Behavioural Modeling

for Scenario-based Testing in Aviation”. In: AIAA SCITECH
Forum (not yet published). Jan. 2023.

SNE 33(4) – 12/2023

Hazem Torfah et al. “Learning Monitorable Oper-ational

Design Domains for Assured Autonomy”. In: Proceedings of
the International Symposium on Automated Technology for
Verification and Analy-sis (ATVA). Oct. 2022.

Daniel J. Fremont et al. “Formal Scenario-Based Testing of

Autonomous Vehicles: From Simula-tion to the Real

World”. In: IEEE 23rd Inter-national Conference on
Intelligent Transportation Systems (ITSC) (2020), pp. 1–8.

URL: https://api.semanticscholar.org/
CorpusID: 212736906.

Francis Indaheng et al. “A Scenario-Based Plat-form for

Testing Autonomous Vehicle Behav-ior Prediction Models

in Simulation”. In: ArXiv abs/2110.14870 (2021).

Hardi Hungar. “A Concept of Scenario Space Ex-ploration

with Criticality Coverage Guarantees -Extended Abstract”.

In: 9th International Sym-posium on Leveraging
Applications of Formal Methods, Verification and Validation,
ISoLA 2020. 2020, pp. 293–306. URL: https : / /
elib . dlr.de/137353/.

Hardi Hungar. “Scenario space exploration for

establishing the safety of automated vehicles”. In: 3rd
China Autonomous Driving Testing Tech-nology Innovation
Conference. Dec. 2020. URL: https://
elib.dlr.de/139626/.


