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Abstract. The ARGESIM benchmark CP2 consists of
three different tasks to study current technologies for the
parallelization of simulation programs, two of which have
been addressed in a previous publication. The third one
is the study of the fluid flow in a special geometry us-
ing the Lattice Boltzmann method. The task is studied
with two methods for up to 256 cores, again using the
MPI message passing library Open MPI and Matlab from
TheMathWorks in combinationwith the Parallel Comput-
ing Toolbox. Solutions with different grid sizes are com-
pared with each other in terms of runtime and speedup.
The Open MPI version generally shows good speedups
even for large core numbers, while the Matlab version
has poor results for 32 cores ormore. On the other hand,
the scalar Matlab version is several times faster than the
Open MPI version, leading to a smaller runtime for up to
32 cores.

Introduction

In this article the solution of one task of the ARGESIM

benchmark CP2 [1] will be presented. The benchmark

contains three tasks, two of which have already been

solved and presented in [2]. The remaining task, the

Lattice Boltzmann simulation, is solved in this article.

The solution is again implemented with the two tech-

nologies Open Message Passing Interface (Open MPI)

[3] and Matlab Parallel Computing Toolbox (Matlab

PCT)[4].

Since the description of the Lattice Boltzmann task

in [1] is very sketchy, the basic method is explained in

more detail in the first section, followed by a descrip-

tion of the scalar algorithm. Then the strategy for par-

allelization of this algorithm is presented. Finally, im-

plementations in MPI and PCT are examined and com-

pared.

The investigations were performed on an HPC sys-

tem of the PHWT Institute called Seneca. The specifi-

cations of the system are shown in Table 1. All pro-

grams and scripts necessary to reproduce the results

presented here are available from [5].

1 Introduction to Lattice
Boltzmann Simulation

The Lattice Boltzmann Method (LBM) is a computa-

tional fluid dynamics method that has gained popularity,

since it is especially well suited for parallel computers.

In the following its basic ideas will be presented and

the CP2 benchmark task described in full detail. This

should make the task accessible to non-experts. A thor-

ough introduction into the method and its connection to

the familiar Navier-Stokes description can be found in

[6].

LBM is based on the kinetic theory, which describes

a fluid on a mesoscopic scale between the macroscopic

description of a continuous fluid and the microscopic

tracking of individual particles.
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Nodes 3

Cores 288

Processors AMD Epyc 7552

Main memory 1536 GiByte

High-speed network 100 GBit/s InfiniBand

Management network 1 GBit/s Ethernet

Operating system OpenSuse Leap 15.3

Middleware OpenHPC

Cluster management Warewulf

Job Scheduler SLURM

Software GCC 9.3.0

GSL 2.6

open MPI 4.1.1

ucx 1.13.0

libfabric 1.13.0

hwloc 2.1.0

Matlab R2021a

Table 1: Seneca hardware and software overview.

Its fundamental variable is the distribution function

f (�x,�ξ , t), which represents the mass density of particles

at position�x, velocity�ξ and time t. It is connected to the

macroscopic mass density ρ(�x, t) and the macroscopic

velocity u(�x, t) by

ρ(�x, t) =
∫

f (�x,�ξ , t)d3ξ

ρ(�x, t)�u(�x, t) =
∫
�ξ f (�x,�ξ , t)d3ξ .

Using standard assumptions one can show that the dis-

tribution function will reach an equilibrium distribution

given by

f eq(�x,�v, t) = ρ
(

1

2πRiT

) 3
2

e−v2/(2RiT ),

where the relative velocity�v :=�ξ −�u is the deviation of

the particle velocity from the macroscopic velocity. f
satisfies the Boltzmann equation

∂ f
∂ t

+ξi
∂ f
∂xi

+
Fi

ρ
∂ f
∂ξi

= Ω( f ).

Here, �F describes external forces, while Ω, the so called

collision operator, is given by the forces between the

particles during collisions. In LBM it is usually re-

placed by the BGK collision operator (named after its

inventors Bhatnagar, Gross and Krook)

Ω( f ) =−1

τ
( f − f eq).

which simply describes the evolution of f towards f eq.

The corresponding relaxation time τ is related to the

macroscopic viscosity.

For the computation of f with LBM one discretizes

space, time and velocity, choosing one of several

schemes according to the dimension of the problem.

Applying standard lattice units, the CP2 task uses a

fixed time step Δt = 1 for t, a two-dimensional square

grid with Δx = Δy = 1 for�x and a set�ci, i = 0, . . . ,8 of

velocities �ξ (cf. Fig. 1), e. g. �c0 = (0,0)′, �c1 = (1,0)′,
�c5 = (1,1)′ etc. .

1
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56

7 8

0

Figure 1: Velocities used in discretization scheme.

For simplicity one replaces the argument �ξ with an

index corresponding to one of the nine possible veloci-

ties, writing

fi(�x, t) := f (�x,�ci, t), i = 0, . . . ,8

The macroscopic quantities are then given simply by

ρ(�x, t) = ∑
i

fi(�x, t)

ρ(�x, t)�u(�x, t) = ∑
i
�ci fi(�x, t).

The equilibrium distribution can now be simplified to

f eq
i (�x, t) = wiρ

(
1+

�u�ci

c2
s
+

(�u�ci)
2

2c4
s

− �u�u
2c2

s

)
,
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with the speed of sound cs = 1/
√

3 and the weights

wi =

(
4

9
,

1

9
,

1
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,
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9
,

1

9
,

1

36
,

1

36
,

1

36
,

1

36

)′
.

The corresponding Lattice Boltzmann Equation (LBE)

in the force-free case �F =�0 is

fi(�x+�ci, t +1) = fi(�x, t)+Ωi(�x, t),

again using the BGK collision operator

Ωi( f ) =−1

τ
( fi − f eq

i ),

where the relaxation time is given by the viscosity ν :

τ =
ν
c2

s
+

1

2
.

Finally one needs initial and boundary values and

a few parameters. The CP2 task requests a quadratic

lattice of size nx × nx with nx = 257 and boundary val-

ues describing a cavity flow that has been studied in

[7]: The upper grid line has a constant velocity �u0 =
(0.1,0)′, while all other boundary points are fixed walls

(cf. Fig. 2).

W
W
W
W W W W W

W
W
W

0 0 0 0 0u u u u u

Figure 2: Definition of boundary values.

The initial values of the macroscopic properties are

defined as

ρ(�x,0) = 1

�u(�x,0) =�0.

The end time of the simulation is given as tend =
350,000, when a steady state should have been reached.

To adapt to the much larger processing power and mem-

ory size since the publication of [1], larger grids up to

nx = 2048 and end time tend = 500,000 will be studied

in the following.

At last, a Reynolds number of Re = 1000 is given,

which leads to a viscosity of

ν =
(nx −1)u0,x

Re
= 0.0256.

2 Basic Scalar Implementation

The scalar implementation follows the lines of the basic

algorithm described in [6]. The essential idea is to split

the LBE in two parts, the collision step

f ∗i (�x, t) = fi(�x, t)− 1

τ
( fi(�x, t)− f eq

i (�x, t)),

which is a local operation at a point, and the propagation

step

fi(�x+�ci, t +1) = f ∗i (�x, t),

which transports the distribution to neighbouring

points. Initially the distribution function is set to the

equilibrium values given by ρ(�x,0) and �u(�x,0). Then

the following computations are performed in a loop

over time steps:

1. computation of ρ and�u from fi,

2. computation of f eq
i from ρ and�u,

3. collision step to get f ∗i ,

4. propagation step to get fi(�x, t +1).

During the collision step the boundary behaviour is im-

plemented: At the top line f is set to the equilibrium

value defined by the given�u0; at the wall points the full-

way bounce-back method is used, which reverses the

velocity of an incoming distribution, i.e. it sets

f ∗(�x,�ci, t) = f (�x,−�ci, t).

After the time loop the relative magnitude |�u|/|�u0|
of the macroscopic velocity is computed and plotted, as

is requested in the benchmark. Fig. 3 shows the result

for the standard benchmark parameters.

3 Parallel Lattice Boltzmann
Simulation

In this chapter, a parallelization strategy for the Lattice

Bolzmann simulation is introduced and investigated on

the HPC system Seneca using two technologies.
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Figure 3: Relative macroscopic velocity magnitude for
nx = 257 after 350,000 iterations.

3.1 Parallelization Strategy

To process the Lattice Boltzmann simulation in par-

allel, the set of cores is virtually arranged in a two-

dimensional cartesian coordinate system as shown in

Figure 4. The data grid f is distributed equally along

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4: Organization of cores on a two-dimensional
cartesian coordinate system.

this grid, so that each core contains a section of the en-

tire grid according to its coordinates. Except for the

propagation step, all calculations on such a section can

be done indepedently by each core.

To simplify the decomposition, the data grid size nx
is restricted to a power of two in the implementation,

e.g. 32x32, 64x64, etc. The number of cores nC is sub-

ject to the same condition so that the entire grid can be

divided equally.

Therefore, nC was varied from 1, 2, 4, . . . , 256 in the

following measurements. Of course, an uneven distri-

bution could be implemented easily. But a fine-grained

study of the effects of the total core number would re-

veal more about the memory architecture and the inter-

connect structure of the hardware than about the prop-

erties of the high-level tools we are interested in.

In the propagation step, displacements are per-

formed in the north, east, south and west directions, as

well as the four diagonal directions. In these shifts, data

must be communicated with neighboring cores. For

horizontal or vertical shifts, there is at most one neigh-

bor to send and one to receive and complete edges of

the local matrix are sent or received. Data points at

the global edges, which do not receive values through

a shift, retain their current values. The diagonal shifts

are a bit more complicated because there are more com-

munication partners here (cf. Fig. 5). At first sight,

(1,1)

(2,2)(2,1)

(1,2)

Figure 5:Matrix shift to the northeast with communication
neighbors.

these operation can be simplified by combining two of

the simple shift operations. For example, a shift to the

north-east can be realized by shifting first to the east,

then to the north. But actually, this leads to wrong val-

ues at the outer edge points, as can be seen in Fig. 6.

Therefore, the following implementations are realized

using explicit diagonal shifts.

A different approach is used by the ScaLAPACK li-

brary [8]: There the entire grid is divided into smaller

matrices of fixed blocksize, which are then distributed

cyclically across the core grid. Since this seems to lead

to a much more involved communication pattern in our

application, it has not been followed here.
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a1 a2 a3
a4 a5 a6
a7 a8 a9

b1 b2 b3
b4 b5 b6
b7 b8 b9

c1 c2 c3
c4 c5 c6
c7 c8 c9

d1 d2 d3
d4 d5 d6
d7 d8 d9

a1 a4 a5
a4 a7 a8
a7 c1 c2

a6 b4 b5
a9 b7 b8
c3 d1 d2

c1 c4 c5
c4 c7 c8
c7 c8 c9

c6 d4 d5
c9 d7 d8
d7 d8 d9

a1 a1 a2
a4 a4 a5
a7 a7 a8

a3 b1 b2
a6 b4 b5
a9 b7 b8

c1 c1 c2
c4 c4 c5
c7 c7 c8

c3 d1 d2
c6 d4 d5
c9 d7 d8

a4 a4 a5
a7 a7 a8
c1 c1 c2

a6 b4 b5
a9 b7 b8
c3 d1 d2

c4 c4 c5
c7 c7 c8
c7 c7 c8

c6 d4 d5
c9 d7 d8
c9 d7 d8

original shifted east

shifted northeast shifted east+north

Figure 6: Comparison of direct and composite diagonal
shifts.

3.2 Open MPI

For the first parallel implementation, the C program-

ming language and the Open Message Passing Interface

(MPI) [3] were used. In order to realize the organi-

zation of the cores as a cartesian grid, Open MPI pro-

vides two functions: MPI_Dims_create factors the

total number of cores into a balanced product. For the

core numbers used here, this results either in a quadratic

core grid or the size in one direction is twice the size of

the other one. The function MPI_Cart_create then

uses these sizes to create a communicator that maps the

existing cores to a two-dimensional coordinate system.

Due to the restrictions in grid size and total core num-

ber, the local data grid sizes of a core can then simply

be calculated by dividing the total length nx by the sizes

of the core grid.

The calculation of the propagation step was di-

vided into eight functions, one function for each di-

rection. To identify the communication partners in

north, east, south and west direction the function

MPI_Cart_shift was used. This function returns

the communication partners for sending and receiving

the boundary values of the local data grids, but is re-

stricted to shifts along the cartesian axes. It simply re-

turns MPI_PROC_NULL, when a shift would leave the

core grid. This value can be used safely in a send or

receive function resulting in a null operation.

For the diagonal shifts, the coordinates of a

core in the core grid and the corresponding tar-

get and source coordinates were determined with

MPI_Cart_coords. They were then used to deter-

mine the corresponding ranks for the send and receive

operations with MPI_Cart_rank. It is important to

use this function only with valid coordinates, otherwise

the program terminates with an error. To prevent this,

one can again use the MPI_Cart_get function.

To collect the data at the end of the simulation the

function MPI_Cart_coords was used to define the

core with coordinates (0,0) as the master and for sort-

ing of the data. This allowed the grid segments to be

associated with the correct points in the global grid.

3.3 Matlab PCT
The second parallel implementation was created using

Matlab and the Parallel Computing Toolbox (PCT) [4].

A very short introduction to Matlab/PCT and the differ-

ent parallelization strategies it supplies can be found in

[2]. The underlying scalar version was taken from [9],

which already compares different earlier parallel tool-

boxes from Mathworks and other authors.

For the task studied here, the PCT concept of codis-

tributed arrays seems to be ideal: The data array is

distributed to the workers automatically, and the local

workers can still use the global index to address all array

points. If an element is not available locally, it is sent

immediately to the accessing worker. Unfortunately,

the corresponding functions are badly documented and

– more importantly – show an extremely bad perfor-

mance [2]. Therefore, the spmd construct was used

in the implementation, which creates a parallel section

that is executed by each worker. This leads to a pro-

gramming style that is smiliar to the MPI implementa-

tion. Since PCT does not provide functions for creat-

ing a two-dimensional core grid and to map cores to a

grid, this functionality was implemented in the appli-

cation using the functions numlabs and labindex.

For conveniance, an array was supplied that contains

the positions of all labindex values in the core grid.

For the propagation step, separate functions were

created for each of the eight directions. To

determine the communication partners a function

cart2D_shift was written, which determines the

rank of the target and the source from a direction vec-

tor and a displacement. This makes it easy to deter-

mine the communication partners. The sending and re-

ceiving of the data was realized with labSend and

labReceive.
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After the spmd section the local arrays are directly

available in one cell array. Therefore the merging of

the results could be realized simply by rearranging all

velocity data in a global array.

3.4 Comparison of solutions

The two implementations were tested on Seneca and the

runtime was analyzed depending on the grid size and

the number of cores. The grid size was selected from

256x256 to 2048x2048, the number of cores from 1 to

256. Since Seneca consists of three nodes with 96 cores

each, runs with up to 64 cores were computed on one

node using local memory only, while for 128 and 256

cores two and three nodes were utilised, and data had to

be sent across the high-speed network. For small num-

bers of cores the number of iterations has been reduced

to make the computing times feasable. The timing re-

sults have been scaled afterwards to the total number of

iterations for easier comparison. The scalar overhead of

the computations was negligible in these cases.
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Figure 7: Runtime and speedup of the Open MPI
implementation for different grid sizes.

Figure 7 shows the runtime and speedup results of

the Open MPI implementation. The most basic model

would assume runtimes that fall with 1/nC and rise

with n2
x , which in a log-log representation would lead

to parallel decreasing straight lines with constant sep-

aration. The runtime plots very roughly show this be-

haviour, especially for larger grid size. The deviations

can be better analyzed in the speedup plot, in particu-

lar when comparing the results with the ideal case of

linear speedup. Here the occuring superlinear speedup

can be seen clearly, which is usually due to the memory

architecture of the system: With increasing core num-

ber, the local memory decreases, until it fits in a fast

cache memory. This interpretation is supported by the

observation that the point, where superlinear speedup

begins, rises with grid size and core number in such

a way that the local memory size stays constant. An-

other expected behaviour is the drop of speedup for

large core numbers, when more than one node is used.

This effect gets smaller with rising grid size, because

the amount of computation dominates the rising com-

munication times. The results suggest that for large grid

sizes an even higher speedup can be reached with more

cores. In Figure 8 the results of the Matlab implemen-

tation are presented.

Looking at the speedups, Matlab PCT reaches good

to reasonable values for up to 16 cores, but very poor

results for more cores. The drop in performance at 128

cores can be seen again, except for a very peculiar rise

at the grid size nx = 2048. But when comparing the

runtimes, the image changes completely: The table 2,

which displays the runtimes for the scalar case nC = 1,

shows the impressive performance of Matlab compared

to the direct C implementation. This is probably due to

the efficient matrix operations Matlab is based on.

grid size runtime [min] runtime [min] ratio
Open MPI Matlab PCT

256 274.4 36.1 7.59

512 906.3 175.6 5.16

1024 4297.3 1173.1 3.66

2048 14757.2 4347.6 3.39

Table 2: Comparison of runtimes for nC = 1.
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Figure 8: Runtime and speedup of the Matlab PCT
implementation for different grid sizes.

Figure 9 shows the runtime ratios of the parallel

Open MPI and Matlab PCT versions, compared for the

same number of cores. Apart from the case of small

grid size, Matlab is faster for up to 32 cores, and for the

larger grids even up to 64 cores. It takes a lot of cores,

until the better speedup of Open MPI catches up with

the better scalar performance of Matlab PCT.

4 Conclusion

The goal of the CP2 benchmark cannot be to compare

latest parallelization strategies for current hardware ar-

chitectures – this would require much more complex al-

gorithms such as those studied in the HPCG benchmark

[10]. Instead, the underlying question of the bench-

mark is: How can non-experts use tools and computing

environments to take advantage of modern multi-core

CPUs? Correspondingly, the MPI implementations of

the three CP2 tasks that have been presented here and

in [2] mainly serve as points of reference and use well

known techniques, whereas the parallelization methods
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Figure 9: Ratio of Runtimes for MPI and Matlab
implementations.

and outcomes provided by a scientific computing envi-

ronment such as Matlab are the main point of interest.

In this respect Matlab PCT is a very interesting

approach, but the results presented here show that it

doesn’t quite live up to its prospects. On the one

hand the spmd construct and standard message-passing

methods make it possible to reach reasonable speedups

for small core numbers, but require knowledge of

standard parallelization techniques. Furthermore, the

parfor command provides a convenient tool for very

simple cases like Monte Carlo studies. On the other

hand, the promising concept of codistributed arrays pro-

vides a very elegant way to cope with the distribution

and parallel processing of large matrices, but it has

shown very poor performance even in the simple PDE

task.

For very compute-intense applications, which bene-

fit most from larger core numbers, one typically would

resort to standard languages like C or C++, together

with optimizing compilers. But as we have seen in the

PDE and LBM tasks, Matlab can be compatible or even

better in the scalar case, due to its highly optimized

mathematical libraries. Therefore it would be very de-

sirable, if Matlab PCT could sustain good speedups to

larger numbers of cores.

In spite of its interesting topic, the ARGESIM CP2

benchmark has not been addressed before. To some ex-

tent, this might be due to the rather short description

of the Lattice Boltzmann task, which needs background

reading to understand the algorithm at all. Hopefully,

the short introduction provided here can help as a start-

ing point for further studies.
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Another problem of CP2 is the small problem size.

To make the tasks challenging on modern architectures,

one has to scale up the problem sizes considerably.

Maybe, one could modernize this benchmark by using

scaling methods instead of fixed sizes, and reissue it as a

new entry in the standard ARGESIM benchmark suite,

giving up on the idea of a special “parallel benchmarks”

series.
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