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Abstract. The aim of this work is to describe a model
of the relationship between blood volume and transmu-
ral pressure of a vessel of the finger, where the finger is
pressed against a surface with increasing pressure. The
focus lies on the amplitudes of the blood volume oscilla-
tions, as they can be measured easily. The model leads
to a formula for the blood volume oscillation amplitudes.
This equation is then fitted to measured data to estimate
systolic and diastolic blood pressure. The focus lies on
the fitting process and the quality of the fitting results.

Introduction
This work introduces and describes a model of the rela-

tion between blood volume and transmural pressure of

a vessel of the finger which is pressed against a surface.

More of interest than the absolute volume are in fact

the blood volume oscillations, as they can be measured

easily using an optical sensor, with respect to changes in

the transmural pressure. This model for the blood vol-

ume oscillations shall be used for estimating the blood

pressure without a cuff at the finger by fitting the model

function to measured data and obtaining the systolic and

diastolic blood pressure as fitting parameters.

1 The Model
The idea of the model is to describe a relation between

blood pressure inside a vessel, pressure acting on the

vessel from outside and the blood volume inside the

vessel. The vessel of interest, the transverse palmar arch

artery, is located in the finger tip and the situation of

interest is the fingertip being pressed on some surface

with increasing pressure. This approach can be com-

pared to the blood pressure measurement with a cuff

around the upper arm as there is also an external pres-

sure acting on the vessel. Similar to the finger pressing

on a surface, the cuff is exerting decreasing pressure on

the vessel from outside, while pressure oscillations are

measured. First, let us take a look at the absolute vol-

ume of the vessel and afterwards at the blood volume

oscillations in dependency of the external pressure act-

ing on the vessel from outside.

1.1 The Vessel Volume

The transverse palmar arch artery lies parallel to the

surface of the finger and the bone underneath. Let us

assume the artery as a cylindric tube of length L. When

the finger presses on a surface, the pressure also acts

onto the wall of the vessel. This external pressure (Pext)

is directed inwards. [1]

The second relevant component is the blood pres-

sure (Pb). This is the pressure applied on the vessel wall

by blood running through the arteries. It is directed op-

posite to Pext , in direction of the outer normal vector.

Hence, the pressure acting on the vessel wall is a com-

bination of Pb and Pext . This combination is defined as

transmural pressure Pt as follows:

||Pt || := ||Pb||− ||Pext ||.

A positive transmural pressure Pt means that the blood

pressure Pb exceeds the external pressure Pext . This

leads to the vessel being pressed apart. A negative trans-

mural pressure Pt , on the other hand, means that Pext
exceeds Pb and therefore the vessel is compressed. [1]

To find a relation between the transmural pressure Pt
and the blood volume V of the artery, A is defined as the

cross-sectional area of the artery. First we are looking

at the artery in relaxed state: Pt = 0. In this case, we

assume A as a circular disc with radius R ∈ R.
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In the second case we are looking at is Pt < 0. In

this case, the artery is compressed. Figure 1 shows the

cross-section with side length a ∈ R
+ and radius of the

semicircles 0 ≤ r ≤ R. [1]

Figure 1: Schematic representation of the cross-section of
the artery for a transmural pressure Pt < 0 [2].

The arterial wall is not stretched. We want to use

this fact to find a relation between R, r and a. Let γ0

be the boundary of A, the cross-section of the artery in

relaxed state, then Lγ0 = 2Rπ . Let γs be the boundary

of the deformed cross-section, then Lγs = 2rπ +2a.

Lγs = Lγ0 (1)

2rπ +2a = 2Rπ (2)

a = π(R− r) (3)

⇒ a ∈ [0,Rπ]. (4)

If the artery is relaxed then a = 0 and if a = Rπ the

vessel is fully occluded. [1]

The next step is to find a relation between r and Pt .

Let us define r(t) := R(
√

1− eαPt ), Pt < 0, inspired by

Charles. F. Babbs [3]. The parameter α > 0 is related

to the stiffness of the vessel wall. Now we can take a

closer look at V .

V (Pt) = LA(Pt) = L(r(Pt)
2π +2r(Pt)a) = (5)

= LR2πeαPt = V0eαPt , (6)

where V0 := LR2π is the volume of the relaxed vessel.

We can see that a negative transmural pressure leads to

an exponential reduction in blood volume. [1]

The next step is to look at the case Pt > 0. The wall is

stretched uniformly in angular direction by the pressure.

Hence, the cross-section A forms a circle with radius

r > R. Let us define r in dependency of Pt based on

Charles F. Babbs [3] as follows:

r(Pt) := R
√

1+
α
β
(1− e−βPt ). (7)

The parameter β > 0 is also related to the stiffness

of the arterial wall and is inversely proportional to the

elasticity of the vessel wall. Again we want to take a

look at the volume V :

V (Pt) = LA(Pt) = L(r(Pt)
2π =

= LR2π(1+
α
β
(1− e−βPt )) =

=V0(1+
α
β
(1− e−βPt )). (8)

[1]

All together we can define the vessel volume V as

follows:

Definition 1.1 (Vessel volume; P. Baumann [1], p. 42)
Let L > 0 be the length of the cylindric shaped trans-
verse palmar arch artery and R > 0 the radius of the
cross-section in a relaxed state (Pt = 0). Furthermore,
let α,β > 0 be fixed parameters describing the vessel
wall elasticity and assume the deformation behaviour
described previously. Then, V is given by

V : R→ R,Pt �
{

V0eαPt , Pt < 0

V0(1+
α
β (1− e−βPt )), Pt ≥ 0

.

(9)

With this definition we can see that V ∈ C1(R) and

that it is monotonically increasing. Figure 2 shows the

function of the vessel volume V for estimated values

for α and β . [1, 3]

Figure 2: V for α = 0.11 and β = 0.03.
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1.2 The Oscillation Curve

The blood pressure Pb is not constant. In contrary, it

varies between a minimum (diastolic, Pdia) and a max-

imum pressure (systolic, Psys). If the external pressure

increase at the finger is sufficiently slow, we can assume

that Pext is constant during each heartbeat. That means

that the change of Pt is determined just by the variance

of the blood pressure Pb. Furthermore, the differences

of Pt lead to a varying amount of blood volume. Hence,

V oscillates between its maximum and minimum during

each cardiac cycle. Since V is monotonically increas-

ing with Pt , it attains its minimum and maximum at the

minimum and maximum of Pb. [1]

To make the next step let us first define pulse pres-

sure PP := Psys −Pdia. Now, we can define the maxi-

mum difference of blood volume ΔV during one heart-

beat as follows:

ΔV (Pm) :=V (Pm +PP)−V (Pm). (10)

Pm denotes the minimal transmural pressure which can

also be calculated as Pm = Pdia −Pext . [1]

The next step is to establish a connection between

systolic and diastolic blood pressure and ΔV . First we

will look at the case Pm ≤−PP:

ΔV (Pm) =V0eα(Pm+PP)−V0eαPm (11)

The next case is Pm ∈ (−PP,0):

ΔV (Pm) =V0(1+
α
β
(1− e−β (Pm+PP)))−V0eαPm (12)

Last, we will take a look at the case 0 ≤ Pm:

ΔV (Pm) = (13)

=V0(1+
α
β
(1− e−β (Pm+PP)))−V0(1+

α
β
(1− e−βPm))

[1]

As already mentioned above, Pm = Pdia − Pext .

Therefore

Pm +PP = Pdia −Pext +Psys −Pdia

= Psys −Pext

Finally, we can combine these results and formulate

an equation for ΔV :

ΔV (Pext) = (14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V0 · eα(Psys−Pext )−α ·V0 · eα(Pdia−Pext ),
Pext ≥ Psys

V0(1+
α
β (1− e−β (Psys−Pext ))−α ·V0 · eα·(Pdia−Pext ),

Pdia < Pext < Psys

V0(1+
α
β (1− e−β (Psys−Pext ))−V0(1+

α
β · e−β (Pdia−Pext )),

Pext ≤ Pdia.

[1]

Figure 3 shows the oscillation amplitude curve

ΔV for an assumed systolic and diastolic pressure of

120mmHg and 80 mmHg and α = 0.11, β = 0.03.

[3, 4]

Figure 3: ΔV for Psys = 120mmHg, Pdia = 80mmHg and α = 0.11,
β = 0.03.

2 Estimating Blood Pressure via
Model Fitting

This model, the formula for the blood volume oscilla-

tions ΔV in particular, in this form can be used for es-

timating blood pressure. To do so, equation 14 can be

used as model function and be fitted to blood volume

oscillations measured from the transverse palmar arch

artery.
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2.1 Measuring of the Blood Volume
Oscillations

The blood volume oscillations (ΔV ) are measured

alongside the contact pressure (Pext) by the smartPWA

device. The smartPWA (smart Pulse Wave Analysis)

device is a bio-signal acquisition sensor device spe-

cially developed and built by the AIT Austrian Institute

of Technology (Vienna, Austria) for research projects.

The device is intended to be held by the user with

both hands, like a gamepad, as shown in Figure 4.

The user’s right index finger touches an optical sensor

for photoplethysmography (PPG) to measure blood

volume changes in the finger’s microvascular bed.

Below the PPG sensor is a pressure sensor that registers

the contact pressure of the right index finger.

Figure 4: The smartPWA (smart Pulse Wave Analysis) and
how it needs to be held: the right index finger
touches an optical sensor for
photoplethysmography to measure blood volume
changes and the applied pressure with a pressure
sensor below.

The PPG, and pressure signals are converted from

analogue to digital signals at 256 Hz and 24-bit resolu-

tion. Communication with a smartphone or tablet com-

puter is established via Bluetooth low energy (BLE)

and the measured signals are streamed continuously to

a mobile app for further data processing.

Let us take a closer look at the measurement of the

blood volume oscillations. The finger pressure on the

sensor is increased steadily by the user up to 200 mmHg

over 30 seconds and at the same time the blood vol-

ume oscillations are measured with the PPG sensor. To

obtain the best possible measurement, the contact pres-

sure Pt between finger and sensor should increase lin-

early with respect to time t and the slope should not be

steeper than 7 mmHg
s . Unfortunately, the pressure sensor

currently in use is not able to detect pressure below 50

mmHg and therefore the pressure detection starts only

at this value. Figure 5 shows an example for the contact

pressure in orange. [1]

Figure 5: Example for a filtered measurement from the
smartPWA. The oscillation amplitudes are shown
in blue and the contact pressure is shown in
orange.

To remove high frequency noise and slow signal

drift, and enhance the amplitude of the volume oscilla-

tions, the measured signal from the photoplethysmog-

raphy sensor needs to be filtered. We assume a heart

rate of 60-120 beats per minute. Therefore, the filtering

is done by applying a high-pass and a low-pass filter

which combine to a band-pass filter with a frequency

range of 1.9 Hz - 8.5 Hz. An example of this filtered

signal is shown in blue in figure 5. [1]

2.2 Realization of the Model Fitting

The idea is to obtain the systolic and diastolic blood

pressure as parameters of fitting the function ΔV to the

measured data. This is done by classical model fitting.

The fitting is realized in MATLAB (The MathWorks,

Natick, Massachusetts, MA, USA) using the curve fit-

ting toolbox. The fitting is done using the non-linear

least squares method with a trust region algorithm as it

is suitable if coefficient constraints are specified [5].

The measured data is prepared for the fitting process

by selecting the peaks of the oscillations (marked in red

in Figure 6). These peaks are used as the data points the

model function shall be fitted to.

From input pressure Pext , only those values are used

for which there is also a peak present at the same time.
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Figure 6: Oscillation amplitudes and corresponding contact
pressure for an example measurement by the
smartPWA. The peaks of the oscillations are
marked in red.

The model function is, as previously mentioned, the

function ΔV . Hence, there are five model parameters

which need to be fitted: the two parameters α and β
which are related to the stiffness of the arterial wall, the

systolic and diastolic blood pressure which are the two

values we want to obtain with this whole process, and

the initial volume of the vessel V0.

Initial Values and Limits. The MATLAB curve

fitting tool box together with the Trust-Region algo-

rithm allows us to set initial values, lower and upper

limits for theses five parameters. To find useful val-

ues here, let us take a closer look at α and β first. We

have already seen that α > 0 and β > 0. Furthermore,

it should always be true that

β
α +β

≈ 1

3
.[1] (15)

There is also an estimation of α and β for the

brachial artery where the estimated values are

α = 0.11 and

β = 0.03.
(16)

For these values the approximation (15) is far

missed since 0.03
0.11+0.03 ≈ 0.21. However, this can be ex-

plained by the fact that there are lots of different shapes

of blood pressure curves. For some experiments, in this

work the parameters α and β are also set to the values

given in (16) and therefore the model function in these

cases is ΔV (Psys,Pdia,V0;P(t)). [3]

These facts need to be taken into consideration

when choosing initial values and limits for α and β .

As initial values, either the values given in equation

(16) or upper limit - lower limit
2 for both are chosen. The

lower limit is set 0.001 for both. Regarding the upper

limits, there are several options, but especially equation

(15) should be kept in mind. The used values are

summarized in table 1. The values of each column are

used in combination.

α 0.5
2
3 0.2

β 0.5
1
3 0.1

Table 1: Different options for the upper limits for α and β .
The values of each column are used in combination.

Regarding the systolic and diastolic blood pres-

sure, the initial values are chosen to be either
upper limit - lower limit

2 for both or 120 for Psys and 80 for

Pdia, since these values are commonly known as refer-

ence values for blood pressure [4] . The upper and lower

limit are set to the maximum and the minimum of the

contact pressure Pext , respectively.

Finally, for the initial volume V0, we choose half of

the difference between the maximum and minimum of

oscillations of the blood volume as initial value and set

the upper and lower limit to the said maximum and min-

imum.

The Data. From 26 subjects, 443 measurements

have been taken at up to five points in time. If pos-

sible, for each subject and at each point in time, more

than one measurement has been performed, to be able to

compare repeated blood pressure estimations. Of the 26

subjects, 15 are male and 11 are female. From 6 of the

26 subjects, the age is unknown. The 1st quartile, me-

dian, and 3rd quartile of the birth-years of the other 20

subjects are 1982, 1985, and 1990. The earliest birth-

year is 1972 and the latest is 1996.

2.3 Categorising of Measured Data

To optimize the results, one approach is to be more strict

regarding the quality of the measurements. Two ways

of deciding which measurement is good enough to be

taken into account, are investigated. The first approach

is to investigate the linearity of the contact pressure Pext
over time.

SNE 33(2) – 6/2023



68

Kastinger and Bachler Modelling Blood Volume Oscillations in the Finger

Figure 7: Plot of the contact pressure exerted on to the
pressure sensor by the finger and the linear
polynomial fitted to this curve.

To do so, a linear polynomial is fitted to the contact

pressure put to the sensor by the finger. This is done

by the ‘fit’ function in MATLAB and the outcome can

be seen in Figure 7. The quality of the measurement is

then assessed with respect to the goodness of this linear

fit. To find a threshold to decide which measurements

to keep and which to reject, the sum of squares error

(SSElin), R2
lin, or root mean squared error (RMSElin) for

a manually chosen subset of measurements are calcu-

lated, and the second quartile or median are used as

guideline for the choice of a threshold.

Another approach to categorize the measurements is

to accept or reject them with respect to the goodness of

the model fitting (SSEmod, R2
mod, RMSEmod). In this

case, any criterion can be used and the threshold is cho-

sen in the same way as above.

3 Results
The model fiting has been performed for all 443 mea-

surements with different initial values and limits. Fig-

ure 8 shows the plot of the fitting curve and the data

points for an example measurement using the above

specified settings with initial values upper limit - lower limit
2

and upper limits 0.2 and 0.1 for α and β , respectively.

The initial values for the systolic and diastolic blood

pressure are also set to be upper limit - lower limit
2 .

The fitted curve resembles the main properties of the

model function ΔV (see figures 3 for reference). Fur-

thermore, the fitted curve also fits to the data points

Figure 8: Plot of the fitted curve and the used data points
for an example measurement.

quite well.

However, there are not only positive results. Fig-

ure 9 shows an example where the model fitting did not

work as expected.

Figure 9: Plot of the fitted curve and the used data points
for an example measurement.

To evaluate the quality of the fit more objectively,

the goodness of the fit parameters provided by the MAT-

LAB curve fitting toolbox are taken into consideration.

For the above combinations of initial values and lim-

its, these parameters are summarized in table 2. As can

be seen clearly, there are almost no differences between

the goodness of the fit parameters for all three combi-

nations.
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α β SSE R2 RMSE

0.5 0.5 1.0e+07*

[0.1963

0.4722

1.1609]

0.4726

0.7502

0.8876

281.4590

432.8865

674.1670

2
3

1
3 1.0e+07*

[0.1957

0.4710

1.1669]

0.4819

0.7522

0.8905

281.4213

432.3620

676.7246

0.2 0.1 1.0e+07*

[0.1963

0.4793

1.1743]

0.4549

0.7483

0.8866

281.6088

432.8869

677.1325

Table 2: The 1st quartile, median and 3rd quartile of the
goodness of the fit parameters for 443
measurements. SSE...sum of squares error,
R2...coefficient of determination, RMSE...root mean
squared error.

3.1 Categorising of Measured Data

The categorization of the measurements to decide

which are good enough for the estimation of the sys-

tolic blood pressure and which not is the next topic we

want to look at. As discussed, two methods to do so are

investigated in this work: fitting a linear polynomial to

the contact pressure curve (‘linear’) and looking at the

goodness of the fit of the model fitting (‘model’). The

threshold, i.e., the first quartile, median, and third quar-

tile of the RMSElin, SSElin, and R2
lin of the linear poly-

nomial fitting calculated for a manually selected subset

are given in table 3.

SSElin R2
lin RMSElin

1.0e+04 *

[3.2299

4.0901

5.9620]

0.9886

0.9922

0.9937

2.2565

2.5403

3.0695

Table 3: First quartile, median and third quartile of the
dispersion of the goodness of the fit criteria SSElin,
R2

lin, and RMSElin for the linear fitting to the contact
pressure calculated for a subset.

To find a threshold for the model fitting based ap-

proach, the first quartile, median, and third quartile

of the goodness of the fit criteria SSEmod, R2
mod and

RMSEmod are calculated for different methods of ro-

bust fitting for the work-set. The results are given in the

below table 4.

SSEmod R2
mod RMSEmod

1.0e+07*

[0.1743

0.4793

1.2426]

0.7609

0.8779

0.9365

276.6219

449.2120

697.3921

Table 4: First quartile, median and third quartile of the
dispersion of systolic blood pressure and the
goodness of the fit criteria SSEmod, R2

mod and
RMSEmod for the subset.

Table 5 shows the results of the categorization using

different thresholds. The goodness of the fit parameters

SSEmod, R2
mod, RMSEmod and the number of rejected

measurements are included.

4 Discussion and Conclusion
The first example, shown in Figure 8, indicates that the

model fitting approach is working well and could be the

right way to go. The data points already show a distinct

shape and the fitting works well. In contrast, the data

points in the second example are more scattered. The

fitting does not work well in this case. This indicates

that the quality of the measurements has a great influ-

ence on the quality of the fit.

The goodness of the fitted parameters, the R2 in par-

ticular, also show a wide range. This also indicates that

there are great differences in the quality of the fit for dif-

ferent measurements. Anyhow, the fitting works well

for a part of the measurements, which is indicated by,

e.g., the high third quartile of the R2. Furthermore, this

already indicates that the goodness of fit parameters, es-

pecially R2, can be used to distinguish between good

and bad measurements.

The results of the categorization of the measured

data further support the above observations. Categoriz-

ing the measured data by the goodness of the fit of the

linear polynomial fitting only leads to small improve-

ments of the goodness of the model fitting although de-

pending on the threshold already lots of measurements

get excluded.
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SSEmod R2
mod RMSEmod

rejected
measurements

Method Exclusion

(linear)

Exclusion

(model)

- - - 1.0e+06*

[19.63 47.93

117.43]

0.4549

0.7483

0.8866

281.6088

432.8869

677.1325

0

linear RMSElin ≥
3.1

- 1.0e+06*

[1.4586

4.0650

8.6325]

0.5328

0.7825

0.8937

245.4182

412.7944

615.4822

183

linear RMSElin ≥
2.54

- 1.0e+06*

[1.6480

4.3642

8.7856]

0.6331

0.8152

0.9064

249.9744

420.3820

626.3038

303

linear SSElin ≥
1.0e+4*

5.9620

- 1.0e+06*

[1.4424

4.0421

8.4975]

0.5327

0.7853

0.8934

244.8690

411.6259

609.2378

188

linear R2
lin ≤ 0.9886 - 1.0e+06*

[1.4256

4.0168

8.4789]

0.5370

0.7879

0.8964

244.2957

410.2751

610.4114

198

model - SSEmod ≥
1.0e+07* 1.2426

1.0e+06*

[1.4066

3.2432

6.0491]

0.5116

0.7740

0.8933

238.4647

356.4845

500.8422

107

model - R2
mod ≤ 0.7609 1.0e+06*

[1.5425

3.9385

8.1521]

0.8314

0.8923

0.9337

259.8585

403.3576

603.6834

235

model - R2
mod ≤ 0.8779 1.0e+06*

[1.3604

3.3716

7.4848]

0.9034

0.9279

0.9546

239.8867

371.3517

563.2087

324

model - RMSEmod ≥ 697 1.0e+06*

[1.4127

3.3117

6.1229]

0.5069

0.7679

0.8935

238.9084

360.1372

509.4549

104
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combined RMSElin ≥
3.1

R2
mod ≤ 0.8779 1.0e+06*

[1.4211

3.8300

7.4848]

0.9034

0.9282

0.9552

238.6218

396.8745

563.2087

364

combined RMSElin ≥
3.1

R2
mod ≤ 0.7609 1.0e+06*

[1.8223

3.9946

7.7939

0.8343

0.8921

0.9347

271.4662

412.8987

582.1261

305

combined RMSElin ≥
2.54

R2
mod ≤ 0.8779 1.0e+06*

[2.3574

4.2898

8.3234]

0.9035

0.9259

0.9514

301.0549

411.8377

602.5087

391

combined RMSElin ≥
2.54

R2
mod ≤ 0.7609 1.0e+06*

[2.1357

4.7765

8.0394]

0.8435

0.9011

0.9396

286.2074

431.9334

589.1964

363

Table 5: First quartile, median and third quartile of the goodness of the fit parameters SSEmod, R2
modand RMSEmod for different

methods and threshold for categorizing the measurements.

Categorizing with respect to the various goodness-

of-the-fit-parameters of the model fitting leads to better

results. Nevertheless, in some cases less then 100 of the

443 measurements would be accepted. The combina-

tion of the two categorization methods does not lead to

a big difference compared to only using the goodness of

the model fitting parameters as criterion. Overall, good

results can be achieved when choosing the right crite-

rion. The R2 of the model fitting seems to be the best

choice. However, it is necessary to find a balance be-

tween not excluding too many measurements and still

obtaining good results.

To sum up, the model fitting works well for a part

of the measurements, but not so good for a great part of

the measurements. There are some indicators that this

can be traced back to the quality of the measurements.

Still, the approach itself shows great promise. Hence,

before looking into the resulting absolute values for the

systolic and diastolic blood pressure, more investiga-

tions on how to improve the fitting by filtering out bad

measurements, increasing the measurement quality it-

self, or preprocessing the measured data is needed. Fur-

thermore, at the same time the possibilities how to cate-

gorize the measurements into good and bad ones should

be investigated further to find the right compromise be-

tween excluding and including measurements.
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