
31

S N E S H O R T N O T E

Parameter-Free Approximation Method for
Controlling Discrete Event Simulation by

Reinforcement Learning
Daniel Pasterk*, Andreas Körner

Institute of Analysis and Scientific Computing, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
* daniel.pasterk@tuwien.ac.at

SNE 33(1), 2023, 31-34, DOI: 10.11128/sne.33.sn.10635

Selected ASIM SST 2022 Postconf. Publication:2023-02-01;

Received Revised Improved:2023-02-27; Accepted:2023-03-10

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. A novel kNN-based approximation method
for Reinforcement Learning (RL) is used to control and
optimize a Discrete Event Simulation (DES). The method
does not require design parameters, is suitable for un-
known and new simulation environments, and can han-
dle irregular and partially sparse state space. We show in
a demonstrative queuing simulation that the method is
more robust than artificial neural networks and achieves
comparable performance.

Introduction
In this contribution we want to show how Discrete

Event Simulations can be controlled and optimized us-

ing reinforcement learning. From a general perspective,

it is promising to optimize simulations using RL. It pro-

vides the ideal framework to represent time-dependent

decision problems in a very natural approach, while

the simulations can generate sufficient d ata. Changes

in the dynamics of environment can also be addressed

via different exploration strategies. Although a large

number of powerful algorithms have emerged since the

1960s, the broad availability of powerful computational

resources, has extended its applicability in many areas.

Starting with the impressive achievements of DeepQ-

Networks [8] in 2013, this form of machine learning

was becoming increasingly popular. Controlling a sim-

ulation with RL is follows the framework of Markov

Decision Processes (MDPs), where an agent interacts

with an environment. The agent receives the state of

the environment and decides on an action, while the en-

vironment responds with a new state and a reward. The

agent tries to choose his actions in a way that the cumu-

lative reward is maximized. The simulation therefore

represents the environment, in which the agent interacts

within the described loop.

While the basic architecture is very clear, the dif-

ficulty often arises at dealing with the formal require-

ments of the framework. It is a important requirement

to represent the simulation as an MDP. While the op-

timization goals and control options can often be rep-

resented very directly with a corresponding reward and

action set, the so-called Markov property must be ful-

filled for the state variable: The entire (relevant) infor-

mation must be able to be encoded in a single state

which has to be independent of its history. In order

to fulfill these preconditions feasibly, there are various

approaches: The simulation can already be developed

with the background of this requirement and the corre-

sponding state variables can be equipped with a well-

suited encoding. Though it has to be mentioned here

that special knowledge about the nature of the simula-

tion is relevant. This somewhat undermines the claim

of a model-free method. As an alternative to the "hand-

crafted" states, one can take the internal simulation vari-

ables directly. These can basically be used as states

in the MDP framework and should satisfy the Markov

property, but it sadly leads to a very high complexity.

In addition, the resulting state space is very irregular

- many combinations of the individual components of

the state vector are not even possible due to the simula-

tion logic. Large areas of the state space are therefore

not used, while in other areas there is a lot of informa-

tion in a very dense form. Hence, a suitable approxi-

mation method has to be found, which can handle these

specific properties sufficiently well. This contribution

presents a non-parametric approximation method based

on the idea of k-nearest-neighbor classification algo-

rithm, which is very well suited for the mentioned chal-

lenges. We demonstrate the method in the context of

classical Q-learning and Monte-Carlo algorithms.

SNE 33(1) – 3/2023



32

Pasterk & Körner Controlling Discrete Event Simulation by Reinforcement Learning

Related Work
We want to give a small selection of publications,

which illustrate the successful application and then

go into specific l imitations: I n 1 998, Mahadevan

and Theocharous [7] use the customized algorithm

"SMART" to optimize transfer lines from a fab in-

cluding predictive maintance. The results show supe-

rior performance compared to the classical ’KANBAN’

heuristic. In Waschneck et al. (2018) [11], DQN is suc-

cessfully applied to control a digital twin of a semicon-

ductor fab. The DQN actions control specific dispatch

heuristics to increase overall performance. Shuhui Qu,

Jie Wang, and Shivani (2016) [9] use RL to solve a dis-

patching problem in factories. A simulation was cre-

ated special as MDP and the learned rules are more cost

effective than most well-known heuristics. Doltsinis,

Ferreira, and Lohse (2014) [3] use RL to optimize a

production startup in an ’automatic assembly station’.

The use of a batched Q-learning algorithm shows the

general suitability of this decision-supported approach.

Some selection of general approaches, which focuses

on the general connectivity of RL with simulations:

Capocchi et al. (2022) [5] show how DEVS proper-

ties can be used within a RL integration focusing on

temporal, hierarchical and multi-agent aspects. Lang

et al. (2021) [6] demonstrate the application of DEVS

to a production planning problem. In this approach, it

is shown how control can be performed using a stan-

dardised interface (OpenAi Gym). In Greasley (2020)

[4], various software products from simulation and ma-

chine learning are examined for connectivity. Some in-

teresting considerations are also made about the struc-

ture of a useful connectivity component. In Choo et

al. (2020)[2], the general problem that discrete event

simulations cannot be directly translated into MDP is

pointed out. It is proposed to translate the state space

and action space of the simulation into their counter-

parts in the RL formalism using equivalence classes.

The approach sounds interesting, but unfortunately no

statement is made about the concrete form of the rela-

tionship.

Method
.1 Architecture

The architecture of our setup can be summarized in Fig-

ure 1. For the interface of the simulation we use the in-

terface of OpenAi-Gym [1], by which the states, actions

and the reward are exchanged. The simulation-internal

variables are made accessible to the agent as a state vec-

tor without further processing. The agent has no further

information about the model apart from the state vec-

tor and the simulation is technically controlled by this

model-free agent. Both the implementation of the code

for the approximation and learning feature, as well as

the implementation of the simulation was done in the

programming language Julia. The framework "SimJu-

lia" was used for the simulation and the modeling fol-

lows the agent-based paradigm.

Figure 1: General overview of the architecture of the
simulation and the RL agent. The approximator
must represent the underlying state space
sufficiently well.

.2 Approximation Method for
Reinforcement Learning

On the agent side, we strongly separate between the el-

ements of "learner", "approximator" and "policy". This

is also illustrated in Figure1. For the case-study below,

we use the update rules from classical Q-learning. For

the state space S, action space A, α ∈ R, γ ∈ R and a

possible reward r ∈ R the update rule can be written as

q(s,a) := q(s,a)+α(r+ γ max
a∈A(s′)

(q(s′,a))−q(s,a)).

(1)

with s ∈ S and a ∈ A. We use this update rule in connec-

tion with various approximation methods such as "State

Aggregation", "Tile-Coding" and "Linear Regression".

We also use Monte-Carlo-1st-Visit [10] and a Deep

Q-Network [8] with two different capacities as a refer-

ence.

Since A is finite, an optimal policy π is immediately

calculated as

π(s) := argmaxa∈A(s)q(s,a), (2)

SNE 33(1) – 3/2023



33

Pasterk & Körner Controlling Discrete Event Simulation by Reinforcement Learning

Figure 2: Performance of k-NN approximation in combination with Q-Learning and first-visit Monte Carlo compared to other
common approximation methods, in simple-deterministic (n = 20), simple stochastic (n = 20), complex-deterministic
(n = 20), and complex-stochastic tasks (n = 20).

where ties are broken randomly, after having computed

the action-value function q.

Our method for approximating q(s,a) is based on

the idea that the collected interactions between agents

and environment are grouped into (k-d)-Trees to the re-

spective action a ∈ A. The RL update rules provide an

error that is added to the current estimate of an exist-

ing query. To obtain q(s,a) in a query, every KD-tree

is searched individually for the k nearest neighbors of a

state for each action and the q-value is calculated by the

arithmetic mean over the k stored values.

Queuing Simulation as Case
Study

.1 Simulation Description

We consider 4 different scenarios from a typical queu-

ing simulation at a service desk. In the simple model,

the agent can change the configuration o nce i n each

time window between 0 and 5 open cash registers, while

in the more complex model 10 changes can be made per

time window and it is possible to open up to 7 cash reg-

isters simultaneously. The service time for each cus-

tomer is 0.25 hours, and the staff budget is 5 hours

in both cases. In the stochastic case, the arrival times

are sampled from a Poisson distribution where we have

peaks in the later morning and in afternoon. The pa-

tience p of the customers is sampled from a uniform dis-

tribution between 3 and 5, and the service time is sam-

pled from a normal distribution with mean 0.25 hours

and standard deviation σ = 0.05 hours. In the more

complex case, the agent can make a decision and rede-

ploy staff 10 times per hour. Therefore, the complexity

increases slightly. This simulation is designed in such

a way that in the deterministic case, 60 customers visit

the bank per day, and 15 staff hours would theoretically

be required to serve for all customers. However, there

are far too few resources. The state-space of the agent

consists of the time of day, the length of the queue, and

the number of open desks. One episode is divided into

ten-time units. A reward of +10 is received for a com-

pleted request and −10 for an abort.

.2 Experimental Results

Over 10k episodes were simulated for all 4 scenarios.

Mean and standard deviation were determined over 20

independent runs. Known approximation methods from

the literature were taken up as a comparison. These

were configured to the best of our k nowledge. The re-

sults can be seen in Figure 2.

In the simple case, classical DQN can adapt very

well to both the deterministic and the stochastic vari-

ants. Linear regression, even in the simple case, is able

to provide useful state approximation only at a very

late stage. In the more complex case, the kNN variants

lead very quickly to a good policy, while other methods

would probably require further and more costly adap-

tation of the design parameters. We can verify that the

approximation by the kNN method works sufficiently

well in both cases and that classical methods by state

aggregation do not have sufficiently well approximation

properties in connection with RL. Neural networks also

provide a good performance, but were complex to con-

figure in order to achieve a learning behavior.

SNE 33(1) – 3/2023



34

Pasterk & Körner Controlling Discrete Event Simulation by Reinforcement Learning

Discussion and Conclusion
We observe that the state space approximation by k-

NN is superior to classical simple methods. In perfor-

mance comparison with DQN, the universal approxima-

tion property of neural networks can provide good per-

formance here. A fairly big advantage of this method

in the context of simulations is the robustness against

proper ranges of values in the state representation and

the necessary design parameters in the approximation

itself. These are serious advantages in the development

and actual usage as an optimization method. While

in parametric approximation methods one has to find

a very balanced dimensioning for a good performance,

this is not necessary in the present case. Furthermore,

the simulation variables can be taken directly and do not

need to be specially prepared by some pre-processing.

This is remarkable especially in the case of neural net-

works, where the performance can be very relevant

mostly due to the size of the network and also the en-

coding of the information in the first l ayer. While the

kNN approximation does not require any design param-

eters, for the other methods a complex evaluation pro-

cess was necessary to show any learning behavior at all.

Especially the choice of the neural network leaves only

a narrow range between over and underfitting. There-

fore, we see the advantages of the k-NN approximation

in connection with classical RL algorithms especially in

the parameter-free operation.

Future Work
Subsequently, we will look at how well this method

works for more complex simulations with non-

equidistant decision logic. We also want to extend our

basic architecture to agent-based simulations that are

not explicitly designed for use within an MDP. Another

opportunity is to apply this non-parametric method with

current policy gradient algorithms in the actor-critic de-

sign pattern. We expect it to be particularly well suited

in the stochastic case.

References
[1] Brockman G et al. “Openai gym”. In: arXiv

preprint arXiv:1606.01540 (2016).

[2] Choo B et al. “Reinforcement Learning from Sim-

ulated Environments: An Encoder Decoder Frame-

work”. In: 2020 Spring Simulation Conference
(SpringSim). May 2020, pp. 1–12.

[3] Doltsinis S, Ferreira P, and Lohse N. “An MDP

Model-Based Reinforcement Learning Approach

for Production Station Ramp-Up Optimization: Q-

Learning Analysis”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems 44.9 (Sept.

2014), pp. 1125–1138.

[4] Greasley. A. “Architectures for Combining

Discrete-event Simulation and Machine Learn-

ing”. In: Proceedings of the 10th International
Conference on Simulation and Modeling Method-
ologies, Technologies and Applications - SIMUL-
TECH, INSTICC. SciTePress, 2020, pp. 47–

58.

[5] L C and Jean-François S. “Discrete Event Mod-

eling and Simulation for Reinforcement Learning

System Design”. In: Information 13.3 (2022).

[6] Lang S, Kuetgens M, Reichardt P, and Reggelin

T. “Modeling Production Scheduling Problems as

Reinforcement Learning Environments based on

Discrete-Event Simulation and OpenAI Gym”. In:

IFAC-PapersOnLine 54.1 (2021). 17th IFAC Sym-

posium on Information Control Problems in Man-

ufacturing INCOM 2021, pp. 793–798.

[7] Mahadevan S and Theocharous G. “Optimizing

Production Manufacturing Using Reinforcement

Learning”. In: Proceedings of the Eleventh Inter-
national Florida Artificial Intelligence Research
Society Conference. AAAI Press, 1998, pp. 372–

377.

[8] Mnih V et al. “Playing Atari with deep re-

inforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

[9] Qu S, Wang J, and Shivani G. “Learning adaptive

dispatching rules for a manufacturing process sys-

tem by using reinforcement learning approach”.

In: 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation
(ETFA). Sept. 2016, pp. 1–8.

[10] Sutton RS and Barto AG. "Reinforcement Learn-
ing: an Introduction". 2nd. The MIT Press, 2018.

[11] Waschneck B et al. “Optimization of global pro-

duction scheduling with deep reinforcement learn-

ing”. In: Procedia CIRP 72 (2018). 51st CIRP

Conference on Manufacturing Systems, pp. 1264–

1269.

SNE 33(1) – 3/2023


