
27

S N E S H O R T N O T E

Hestia.jl: A Julia Library for Heat Conduction
Modeling with Boundary Actuation

Stephan Scholz*, Lothar Berger

Control and Process Engineering, Ravensburg-Weingarten University of Applied Sciences, Germany
Web: https://forschung.rwu.de/forschungsgruppen/control-and-process-engineering
*stephan.scholz@rwu.de

SNE 33(1), 2023, 27-30, DOI: 10.11128/sne.33.sn.10634

Selected ASIM SST 2022 Postconf. Publication:2023-02-01;

Received Revised Improved:2023-02-27; Accepted:2023-03-10

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. Heat conduction modeling in three dimen-
sions with boundary actuation plays an important role
in thermal process engineering, for example in case of
heating plates, laser welding or 3D printing. Here, the
actuators and the induced energy have to be described
exactly for such processes to guarantee a high simula-
tion quality. We introduce Hestia.jl, a software library to
model three-dimensional heat conduction with multiple
spatially distributed heat sources on the boundary.

Introduction

The heat equation is a standard example in numerical

analysis and control theory. Several software tools and

libraries like OPENFOAM [1], FENICS [2], TRIXI.JL

[3] and VORONOIFVM.JL [4] exist to solve heat equa-

tion models in one, two or three dimensions. These

software tools are general purpose solvers for (specific

types of) partial differential equations, which means

they are also applicable for other models like the Poi-

son or Burgers’ equation. However, they often require

solid knowledge in the theory of finite volume or finite

element methods.

We present HESTIA.JL [5], a Julia library [6] to sim-

ulate heat conduction in one, two and three dimensions

with boundary actuation. A discretized heat conduction

model is created in few steps using HESTIA.JL, without

deep knowledge of numerical analysis. This heat con-

duction model is solved in time using high-order nu-

merical integrators provided by DIFFERENTIALEQUA-

TIONS.JL [7].

1 Problem formulation

Heat conduction is often modeled to occur inside

geometrical objects like one-dimensional rods Ω =
(0,L), two-dimensional plates Ω = (0,L)× (0,W) and

three-dimensional cuboids Ω= (0,L)×(0,W)×(0,H).
These objects are implemented in HESTIA.JL as data

types HeatRod, HeatPlate and HeatCuboid to store

the original dimensions and the spatial approximation

including sampling and number of grid points.

We distinguish linear and quasi-linear heat conduc-

tion depending on the definition of its physical prop-

erties: thermal conductivity λ , specific heat capacity c
and mass density ρ . Constant properties (in case of lin-

ear heat conduction) are stored as a StaticIsoProperty
whereas temperature-dependent properties (in case

of quasi-linear heat conduction) are stored as a

DynamicIsoProperty. In particular, temperature-

dependent properties are assumed to be modeled as

power series, e.g. λ (Θ) = ∑N
n=1 an Θn−1, and the co-

efficients are saved in an array, e.g [a1, · · · ,aN]. So, we

assume the quasi-linear heat conduction model

ρ(ϑ) c(ϑ)
∂ϑ(t,x)

∂ t
= div [λ (ϑ) ∇ϑ(t,x)]

with (t,x) ∈ (0,T)× Ω and final time T > 0 to be a

generalization of the linear heat equation.

On boundary ∂Ω the variation of temperature ϑ is

affected by the boundary conditions, namely linear heat

transfer

−h(x) ([ϑ(·,x)−Θamb(x)])

and nonlinear heat radiation

−ε(x) σ
[
ϑ(·,x)4 −Θamb(x)4

]
to the environment with ambient temperature Θamb,

heat transfer coefficient h, emissivity ε and Stefan-

SNE 33(1) – 3/2023

28

Scholz and Berger A Julia Library for Heat Conduction Modeling

Boltzmann constant σ , see also [8]. The parameters h,

ε and Θamb are stored in data type Emission and can be

defined for each boundary side separately, see Table 1.

West {0}× [0,W]× [0,H]

East {L}× [0,W]× [0,H]

South [0,L]×{0}× [0,H]

North [0,L]×{W}× [0,H]

Underside [0,L]× [0,W]×{0}
Topside [0,L]× [0,W]×{H}

Table 1: Names and positions of boundary sides.

2 Actuator configuration

Actuators are only assumed on boundary sides - not

inside the geometrical object. The actuated boundary

sides (west, east, etc.) are partitioned using a checker-

board pattern and for each partition βn an actuator and

its spatial configuration bp can be defined as introduced

in [9]. This spatial configuration describes the possible

spatially distributed intensity of actuation ranging from

zero (no actuation) to one (full actuation). We define a

radial symmetric configuration as

bp(x) =

{
mp · exp

(−‖Mp(x− xc,n)‖2νp
)

for x ∈ βn,

0 for x ∈ BA \βn

with scaling m ∈ [0,1], curvature matrix M ∈ R
3×3,

power ν ∈ N>0 and central point xc,n ∈ βn of the

n-th partition. These coefficients are stored as

RadialConfiguration. The choice of a spatial con-

figuration shall approximate real-world scenarios where

heating elements may not be able to induce the same

amount of energy at each position of its surface. An

example partition and its related actuator configuration

are illustrated in Figure 1.

3 Demonstration example

Next, we explain how to build a simulation of a cooling-

down and heating-up process for a three-dimensional

cuboid. A full listing can be found on GitHub [10].

Setting up the model

We specify the physical properties of a quasi-linear heat

conduction model as ρ := 7800,

c(Θ) := 330+0.4 Θ and

λ (Θ) := 10+0.2 Θ−10−4 Θ2.

These coefficients are stored in arrays as noted in Sec-

tion 1 and a DynamicIsoProperty is created as in

Listing 1.

property =
createDynamicIsoProperty(
[10.0, 0.2, −1e−4], [7800], [330, 0.4])

Listing 1: Create property type for quasi-linear dynamics.

We design a cuboid of length L = 0.3, width

W = 0.2 and height H = 0.1, which is discretized by 40

cells in x1-, 24 cells in x2- and 10 cells in x3-direction.

The model is built as in Listing 2

cuboid =
HeatCuboid(0.3, 0.2, 0.1, 40, 24, 10, property)

Listing 2: Create cuboid model.

The ambient temperature of the boundary conditions

is set to 300 Kelvin. On boundaries west and east we

assume the heat transfer coefficient h = 10 and emis-

sivity ε = 0.6, see Listing 3. On boundaries north and

east we consider only heat transfer with h = 10 and

no heat radiation, all other boundary sides are consid-

ered with zero-Neumann boundary conditions (h = 0

and ε = 0) and do not have to be implemented explic-

itly.

boundary = initBoundary(cuboid)
emission = createEmission(10, 0.6, 300)
setEmission!(boundary, emission, :west)
Listing 3: Specify boundary conditions.

Cooling-down process

Now, the heat equation is approximated in space and

forms an ordinary differential equation (ODE) which is

solved with DIFFERENTIALEQUATIONS.JL. The spec-

ification (geometry, property, boundary conditions) and

the temperatures are handed over to the diffusion!
function to compute the right-hand side of the ODE,

see Listing 4. The cool_down! function forms a stan-

dard interface for numerical ODE integration methods

provided by DIFFERENTIALEQUATIONS.JL.

SNE 33(1) – 3/2023

29

Scholz and Berger A Julia Library for Heat Conduction Modeling

cool_down!(dv, v, p, t) =
diffusion!(dv, v, cuboid, property, boundary)

Listing 4: Define interface for ODE solver for cooling-down
process.

The cooling-down process is not depicted here be-

cause we focus on the heating-up process as described

next.

Width

H
ei

gh
t

Config. b2

Actuator 13

Config. b2

Actuator 14

Config. b1

Actuator 15
no actuation

(a) Boundary partition

(b) Actuator configuration

Figure 1: Partition (a) and configuration (b) on east
boundary at x1 = L with configurations
b1: (m1,M1,ν1) = (1.0,50 I3×3,3) and
b2: (m2,M2,ν2) = (0.5,30 I3×3,2).

Heating-up process

The heating-up process extends the previous steps by

specifying the position and spatial configuration of ac-

tuators on the boundary sides as discussed in Section

2. In this example, we assume actuation on boundaries

UNDERSIDE and EAST. The underside is subdivided in

4× 3 partitions and for each of it an individual actua-

tor with configuration b1 where m1 = 1, M1 = 50 I3×3,

ν1 = 3 is specified as in Listing 5.

config = setConfiguration(1.0, 3, 50)

Figure 2: Temperature on the underside at x3 = 0.

setIOSetup!(actuation, cuboid, (4,3),
config , :underside)

Listing 5: Specify actuation on underside.

Boundary EAST is subdivided manually with

2 × 2 partitions, as portrayed in Figure 1, where

two fields are defined by configuration b2 with

m2 = 0.5, M2 = 30 I3×3, ν2 = 2, one field is defined by

b1 as noted above and one field is not actuated. See also

the complete listing [10].

A constant heat input un(t) = 4 · 105 for actuator

n = 1, . . . ,15 (12 actuators on the underside and 3 on

the east boundary) is set and the ODE interface is im-

plemented as in Listing 6.

u_in = 4e5 * ones(15)
heating_up!(dv, v, param, t) =
diffusion!(dv, v, cuboid, property,

boundary, actuation, u_in)
Listing 6: Define interface for ODE solver for heating-up

process.

The heating-up process is simulated for Tf = 200

seconds and the final temperature distribution on the un-

derside (at x3 = 0) and east boundary (at x1 = L) are por-

trayed in Figure 2 and 3. They unveil the strong influ-

ence of the actuator configuration on the resulting tem-

perature distribution which reaches up to 470 Kelvin. A

three-dimensional temperature distribution is illustrated

in Figure 4 for temperatures above 360 Kelvin.

4 Conclusion
We introduced the software library HESTIA.JL for mod-

eling of three-dimensional heat conduction with bound-

ary actuation. The recent version is able to approximate

linear and quasi-linear (isotropic) heat conduction and

SNE 33(1) – 3/2023

30

Scholz and Berger A Julia Library for Heat Conduction Modeling

Figure 3: Temperature on the east boundary at x1 = L.

Figure 4: Temperature distribution in the cuboid for
temperatures higher than 360 Kelvin.

to handle radial symmetric actuator configurations. Our

further research will focus on the development of opti-

mal control modules for HESTIA.JL, and on its good in-

tegration in Julia’s Scientific Machine Learning ecosys-

tem.

References

[1] Weller HG, Tabor G, Jasak H, Fureby C. A ten-

sorial approach to computational continuum me-

chanics using object-oriented techniques. Com-
puters in Physics. 1998; 12(6): 620–631.

[2] Logg A, Wells GN. DOLFIN: Automated finite el-

ement computing. ACM Transactions on Mathe-
matical Software. 2010; 37(2), 1-28.

[3] Schlottke-Lakemper M, Gassner GJ, Ranocha H,

Winters AR, Chan J. Trixi.jl. Zenodo. 2022.

Available: https://zenodo.org/record/
6372038

[4] Fuhrmann J, contributors. VoronoiFVM.jl: Finite

volume solver for coupled nonlinear partial

differential equations. Zenodo. 2022. Available:

https://doi.org/10.5281/zenodo.
6151074

[5] Scholz S. Hestia.jl. Zenodo. 2023. Available:

https://doi.org/10.5281/zenodo.
7685941

[6] Bezanson J, Edelman A, Karpinski S, Shah VB.

Julia: A fresh approach to numerical computing.

SIAM Review. 2017; 59(1): 65-98.

[7] Rackauckas C, contributors. SciML/Differ-

entialEquations.jl. Zenodo. 2022. Available:

https://doi.org/10.5281/zenodo.
5837925

[8] Baehr HD, Stephan K. Heat and mass transfer.

Springer Science & Business Media, 2011.

[9] Scholz S, Berger L. Modeling of a multiple source

heating plate. arXiv preprint arXiv:2011.14939.

2020.

[10] Scholz S. HestiaDemonstration.jl. GitHub.

2022. Available: https://github.com/
stephans3/HestiaDemonstration.jl

SNE 33(1) – 3/2023

