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Abstract. Virtual Stochastic Sensors (VSSs) [1] aim to
provide insight into stochastic processes by produc-
ing statistically relevant estimates of non-measurable
system properties. During behavior reconstruction of
these discrete stochastic systems the internal system
state changes are often described as time-homogeneous
distribution functions, as in Conversive Hidden non-
Markovian Models (CHnMMs). However, the system be-
havior might change over time or the sample, used for
the model creation, might not describe the system accu-
rately. In [2] and [3] we have shown that detecting these
changes is possible, yet the resource consumption for the
re-estimation of the model was a clear problem. In this
paper we present a solution to that problem by replacing
the used statistical tests with Kernel Density Estimation
(KDE) and by integrating the hidden model description
into the proxel-based state space simulation method. By
using the Change Adaptation Algorithm (CAA) this paper
shows that adapting to runtime changes is possible, while
preserving parameters on transitions where no change
occurs. The algorithm was tested with 5 different types
of Probability Density Functions (PDFs) which showed ac-
curate results. By using the CAA one is able to construct
adaptive models for behavior reconstruction without the
need to fully parametrize the model. In this way, loss of
modeling accuracy in themodel construction process can
be significantly decreased.

Introduction

VSSs were introduced in [4]. They are tools to recon-

struct the behavior of partially observable processes in

discrete stochastic systems. Constructing VSSs relies

in practice heavily on manually provided knowledge

about the system. But what happens if that informa-

tion becomes outdated or inaccurate during the model

construction or over time? What happens if there are

flaws in the model construction of the VSS?

To overcome this limitation this paper introduces the

CAA, which describes how a proxel-based analysis of

CHnMMs can be extended to tune the stochastic param-

eters of the system model during runtime. The imple-

mentation utilizes KDE to re-estimate the state change

distributions in every time step based on historical run-

time information. In this way potentially different sys-

tem models are available in a given time step to provide

the most accurate model and trace estimation at the end

of the behavior reconstruction.

The paper is a proof of concept to analyze whether

change adaptation in this way is possible to provide a

more realistic coupling between simulation models and

the real world and whether such adaptation can be main-

tained during the VSS’s lifetime.

1 Related Work

Measuring information in complex systems has often

physical or financial limitations, which might be re-

solved using Virtual Sensors (VSs) [5]. For stochastic

systems, by combining VSs with stochastic processes,

a so-called VSS can be constructed to measure statisti-

cally relevant estimates of non-measurable system pa-

rameters. One of these possible stochastic processes

is called CHnMM [6], which can be analyzed by the

proxel-based analysis method.

In this section, a brief overview will be given of the

previous work on VSSs and KDE with which we are

extending the concept to make change adaptation pos-

sible. Additionally, the energy distance will be intro-

duced in a few words, hence this was used during the

model evaluation.
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Conversive Hidden non-Markovian Model
The Hidden Markov Model (HMM) [7] is a well

researched technique to analyze directly not observable

models through probabilistic symbol emissions. The

HMMs assume memoryless model state changes,

which is why the concept of Hidden non-Markovian

Model (HnMM) was introduced in [8] to extend the

HMMs with state changes governed by arbitrary

continuous distribution functions. Using HnMMs one

is able to define time dependence between different

system states.

[6] introduced CHnMMs as a subclass of HnMMs

where all state changes of the hidden process of inter-

est emit a symbol for the observer, making additional

performance optimizations possible. In this paper, the

implementation of the CAA was restricted to CHnMMs

to make the proof of concept analysis easier to interpret

and to reduce the number of interference factors.

Both CHnMMs and HnMMs try to solve, simi-

larly to the HMMs, the so-called evaluation (finding

the probability that a given trace was generated by the

model) and decoding tasks (finding the most likely gen-

erator state sequence). However, instead of using the

Baum-Welch algorithm [7] or the Viterbi algorithm [7]

the so-called proxel-based analysis is used which is

briefly introduced in the next paragraph.

Proxels-Based Analysis To reconstruct the state

space of stochastic processes it is possible to use the

so-called proxel-based analysis [9] introduced in [10].

Using this technique one is able to construct container

like „probability elements” (proxels) which store all rel-

evant information of a defined discrete simulation state.

These are, as shown in Equation 1, the current system

state (m), the transition age vector (τ), the probability

of the current state (p) and the current timestamp (t).
But of course, it can be further extended, for example,

with the generator path.

Px = (m,τ, p, t) (1)

The analysis uses discrete timesteps to track the

state changes during the process. The connection be-

tween a parent proxel and its children in the next

time step is characterized by the Hazard Rate Func-

tion (HRF) in Equation 2 which describes the rate of

probability that a specific state change will happen in

the next timestep if it has not happened yet.

H(τ) =
f (τ)

1−F(τ)
(2)

The network of parent and child proxels in the simu-

lation domain construct the so-called proxel tree, which

tracks all possible system states in discrete time steps.

To prevent state-space-explosion and to provide accept-

able simulation times, impossible or very unlikely prox-

els are pruned.

Kernel Density Estimation KDE was introduced

in [11] and [12]. The idea behind the KDE is to place

small kernels K() on samples Xi in the domain and use

their aggregated sum as a PDF, as written here:

f̂ (x,b) =
1

nb

n

∑
i=1

K
(

x−Xi

b

)
(3)

Where n is the number of elements in the sample,

and b is the so-called bandwidth parameter, which is

a free smoothing parameter to „stretch” the kernels to

a possibly optimal PDF. The bandwidth selection is a

well researched topic on its own. [13] gives a detailed

overview about the different techniques and their limi-

tations.

There are multiple techniques to improve the accu-

racy of the estimated PDF. One of them is using vari-

able KDE, discussed in [13] and [14], where every sin-

gle kernel gets its own bandwidth through the weights

wi. In this way, one is able to create „spikes” in the PDF

where the underlying samples are more dense and still

preserve smooth tails and junctions, which is challeng-

ing with real world data and a constant bandwidth.

f̂ (x,b) =
1

nb

n

∑
i=1

1

wi
K
(

x−Xi

bwi

)
(4)

As the CHnMMs are working in the time domain,

boundary correction [15] can be used to restrict the

KDE computation to positive numbers.

KDE has the advantage over regular PDF definitions

that one is not bounded to a defined class of PDFs, be-

cause a wide variety can be approximated with KDE as

long as a suitable number of samples (n) is available

and one is able to choose an appropriate bandwidth (b).

Energy distance The energy distance [16] (Equa-

tion 5) describes a statistical distance based on New-

SNE 33(1) – 3/2023



11

Bodnár and Krull Model Transitions in Proxel Based Simulation of CHnMMs

ton’s potential energy between two independent random

samples (X and Y ) described by the Cumulative Distri-

bution Functions (CDFs) F and G. The resulting dis-

tance is 0 if and only if F = G.

D2(F,G) = 2E||X −Y ||−E||X −X ′||−E||Y −Y ′|| (5)

Compared to the popular statistical tests like the

Wald-Wolfowitz Runs Test, the Kolmogorov-Smirnov

Test [17], etc. [18] the energy distance is superior in

quantifying differences [19] and it is also closely re-

lated to the Cramér von Mises distance [20], which is

often used to quantify the difference between distribu-

tion functions.

In order to interpret the energy distance, it needs to

be normalized as written in [21] (Equation 6). The ex-

pression Dn is bounded between zero and one and it is

equal to zero if and only if the samples X and Y have

the same distribution.

Dn =
D2(F,G)

2E||X −Y || (6)

This metric can be used to quantify deviation be-

tween two distribution functions so in this paper it was

used for describing the deviation of the model transition

from the ground truth in the evaluation section.

2 Change Adaptation Algorithm
The CAA utilizes the KDE ideas described in Section

1 to construct the transition distributions in every time

step. This extension has the additional positive effect

that the state transitions are not directly linked to any el-

ementary distribution function and its prelimitary prop-

erties.

For the KDE computation a given amount of historic

samples are used, which are stored for every transition

separately using sliding windows. The basic idea is to

couple the proxels using these samples with the model

definition, in a way that every single proxel encapsu-

lates its own model representation of the CHnMM. As

a kernel the standard normal distribution was selected,

which has an infinite support, resulting in theory in

KDEs accepting new samples from the whole domain,

even outside of the current PDF with a very small but

non-zero probability.

By using KDE, the CAA extends the content of a

single time step. Before, the time step ti contained n
probable system states from which the most probable

one(s) will survive. With CAA the number of proxels in

a given time step represent m ≤ n different models with

n different system states from which the most probable

one(s) will survive.

Upon a model drift on a specific transition, the new

samples will be automatically assigned to the history

of the most probable transition as a result of Equation

2. By doing so, the new samples push out the old

model samples from the history with every new time

step and this automatically results in a reconfiguration

of the CHnMM model through the KDE. As a result,

the model is able to adjust itself to model changes with

a given delay defined by the length of the history vector

and the mean of the new samples.

Implementation To implement the CAA the tran-

sition age vector τ gets replaced by a transition vector T
which holds the age τ and the history vector hn for ev-

ery single transition in the CHnMM. The history vector

holds the last n firing time samples for the transition Ti.

Px = (m,T(τ,hn), p, t) (7)

The basic mechanisms of the CAA are shown on a

flowchart in Figure 1. The values of the history vectors

are used as a basis for the KDE. As a bandwidth se-

lector a univariate direct plug-in selector, described in

[13], was used.

In a given timestamp ti, a KDE is computed for ev-

ery active transition of every proxel. The state change

probabilities are computed based on these KDEs and

the algorithm generates all child proxels based on the

possible state changes for the time step ti+1. The history

vector of all the fired transitions gets altered based on

the current timestamp and age criteria. At the end, very

unprobable child proxels are pruned from the proxel

tree before the next time step begins.

The CAA needs an initial model injected upon start.

To do that, every transition of the first proxel at t0 is pre-

seeded with some kind of history. We used as preseed

n quantile samples with a n−1 step reqular grid from

an assumed CDF. The samples were reordered accord-

ing to the PDF so that the most probable sample gets

removed first during the sliding window approach.

KDE is a resource intensive computation. We used

a look-up-table to speed up the algorithm with a resid-

ual error in the PDF of 10−5. This error does not cause

a significant difference in the end results unlike other

computations in the background, like the Kingsbury-

Rayner formula [7], that have a much higher computa-
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Figure 1: Flowchart of the Change Adaptation Algorithm

tional error. This discretization has the negative draw-

back that very strong changes in the model result in 0

probability instead of a very small one which can result

in a died out proxel tree. This means, that in practice

the algorithm will need a roughly usable preseed at the

beginning.

Parameters There are two major parameters im-

pacting the results. One of them is the size of the history

vector represented by the window size. The other one

is the amount of improbable proxels getting removed

from the proxel tree in every time step controller by the

pruning.

Window size The window size, so the length of

the history vector, defines the memory of a given tran-

sition. By choosing higher values the algorithm gets

more robust against outliers and KDE becomes more

accurate. However, this also results in more computa-

tional complexity and the adaptation to a new change

gets slower as new samples need more time to push out

the old ones from the window. Choosing a too small

window size can result in a faster computation, but the

model will be affected by any interference on the input

side of the simulation.

Pruning There are two major strategies for prun-

ing away unlikely states. One of them is keeping only

a given number of most-likely proxels, which might

result in more inaccurate models. The other one is

defining a so-called pruning threshold which will delete

proxels if their probability gets below a given value.

In this paper we restricted ourselves to the second ap-

proach.

p(Ppruned,ti)< r max(p(Px,ti)) (8)

The pruning threshold r, as it can be seen in the

Equation 8, is defined by a fixed probability ratio of

the most probable proxel in the time step and the prox-

els which are considered too unlikely. Choosing a high

value results in a proxel tree without any real diversity

in a single time step. In most of these cases a single

model becomes prevalent and if that becomes impossi-

ble, the tree dies out. However, if one chooses a too low

value then the state space explodes and the algorithm

will run too slow (as long as enough RAM is available).

r =

⎧⎪⎨
⎪⎩

rmin if #Px,ti < #Pmin

r(#Px,ti) if #Pmin ≤ #Px,ti ≤ #Pmax

rmax if #Px,ti > #Pmax

(9)

The concept of variable pruning threshold was intro-

duced, as fixed pruning thresholds did not fulfill all the

requirements of the CAA. The basic idea is (Equation

9) to define a mathematical function between a fixed

minimum and maximum pruning threshold based on

the number of the proxels in the given time step and

use that to define a dynamic transition between those

values. This makes it possible to significantly reduce

the execution time and to prevent state space explosion

while maintaining accurate results and model estima-

tion.
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3 Experiments

Experiment setup To validate the CAA, a basic

academic example was used, originally introduced in

[6]. In this model two production lines get merged be-

fore a common quality tester. Both lines produce faulty

products with a given probability.

Figure 2: Quality tester example [6] and its ASPN [1]

The system can be described with the ASPN [1] in

Figure 2. The symbol emission probabilities were cho-

sen to be equal on both transitions in order to eliminate

possible information gain through the asymmetric prob-

abilities.

To validate the CAA, different PDFs were assigned

to the transitions describing the production line sources.

In a single experiment, Source 1 and Source 2 had al-

ways the same distribution type as ground truth to sim-

plify the comparison of the results and to be able to ne-

glect errors introduced by the KDE, as the error appears

in both distribution estimations in a similar way. Figure

2 shows the original model parametrization, which was

used to preseed the algorithm upon execution start. If

not normal distribution was used, the distribution of the

specific type under analysis had the same location and

scale parameters as mentioned in the figure.

The input data for the experiment was generated in

a way that Source 2 received ground truth information,

while for Source 1 samples from a changed distribution

were generated. For easier comparison of the results,

Scipy’s [22] location-scale(-shape) parametization was

used. Please, be aware that this parametization dif-

fers from the standard academic notation. Five distri-

bution function types were analyzed: normal, uniform,

exponential, lognormal and Weibull distribution. The

change consisted of location parameters on a grid of

[60,150] with a step size of 10, while the scale parame-

ter was tested between [5,30] with a step size of 5. For

PDF types lognormal and Weibull an additional shape

parameter was used to test a wider range of possible

changes. For every parameter combinations, 20 random

experiments were executed.

Parameter selection To analyze the impact of the

variable parameters on the experiment results, the pa-

rameters window size and pruning threshold were an-

alyzed in a way that the parameter under test was

changed on a regular grid while the other parameter was

held constant. The results can be seen in Figures 3 and

4.
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Figure 3: Impact of window size. The error is measured
between the ground truth and the model
distributions reached at tend . The accuracy plot
shows the rate of correctly classified symbols.

In Figure 3 one can see that by increasing window

size the execution time increases drastically, as the KDE

computation has O(n2) [13] computational complexity.

However, we can also see that choosing a greater win-

dow size does not automatically lead to better perfor-

mance as described in Section 2. Similarly, if we choose

the window size too small then the outliers have a nega-

tive impact on the results. The optimal window size lies

in this case between 120−130 so we chose 125 for the

experiments.
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Figure 4: Impact of pruning threshold. The error is
measured between the ground truth and the
model distributions reached at tend . The plot with
the state space explosion shows the rate of failed
experiment executions due to out of RAM. The
accuracy plot shows the rate of correctly classified
symbols.

In Figure 4 one can see that with increasing prun-

ing threshold the model and the symbol classification

become more inaccurate. This is a direct impact of

reduced diversity in a time step. The optimal pruning

threshold can be found around the value 0.2, however,

there is a significant risk of experiencing state space ex-

plosion.

r(#Px,ti) = 0.15(log(#Px,ti)−3)2 +0.1 (10)

To overcome these limitations variable pruning was

introduced between n = [103,105] and r = [0.1,0.7]
with Equation 10. This made it possible to reach the

same accuracy results as with the static threshold 0.2
and prevent state space explosions accurately on the

cost of ≈ 40% increase in mean execution time.

Experiment results Table 1 shows how well the

symbols were classified. The precision and recall val-

ues were also included as there is a significant differ-

ence between the number of symbol emissions on the

different transitions. Generally, it can be said, that the

classification performs quite well, however, the transi-

tion with change has a higher true positive rate (≥ 80%

compared to ≥ 75%). This is due to the higher emission

rate on the transition 1.

Surprisingly, even in case of the exponential distri-

bution, we get accurate results. Without the CAA, as

written in [2] and [3], concurrent exponential transi-

tions were always a problem for the proxel-based simu-

lations as the HRF is in this case constant and all symbol

emissions get assigned to the transition with the higher

HRF. KDE cannot fully reproduce the exponential dis-

tribution in the background, in this way, by violating the

theory of the exponential distribution we get practically

usable results.

Table 2 shows the model errors at the end of the ex-

periment. There is an expected amount of faulty re-

sults in the experiment which was basically predefined

by the setup. The defined parameters in Subsection 3

already show that there are cases when the two transi-

tions will (with a very high probability) merge. These

expectations were documented in the „Tr. merge” col-

umn of the table with ranges in square brackets. One

can see that these expectations were always fulfilled,

but the values were in the lower range. This means that

the CAA was able to distinguish in some cases between

distributions which were very close to each other, how-

ever, this is most probably pure luck.

Of course, when an algorithm tries to adjust itself to

a changing environment, the classification might flip,

which in our case means that the transitions switch

places. We label a case as a transition flip if the mean

of the resulting transitions flip compared to the ground

truth. This happened only in less then 5% of the cases,

except the lognormal distribution. It means, that the

CAA is able to accurately adjust itself to new models

while it is able to maintain a constant distributions.

If we take a look at on the bad, or better said not

fully accurate, models, the same statement can be made.

A model on a transition was considered to be bad, if

the normalized energy distance (Equation 6) between

the KDE estimate and its target distribution exceeded

the value 0.03. Please, note that this is not a p-value.

A flipped model should automatically result in a bad

model in this table, so that is responsible for a signifi-

cant amount of the bad models. However, please bear in

mind that there are model definitions very close to each

other so merged models with very slight differences in

the ground truth might not result in a bad model with or

without a transition flip. This happened in the case of

the normal and the exponential distributions. Generally,

it can be said that in ≥ 91% at least one, and in ≥ 84%

both transition models were accurate.
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Dist. type Accuracy Precision 1 Precision 2 Recall 1 Recall 2

Normal 80.60%±0.43% 83.52%±0.41% 75.50%±0.50% 83.17%±0.43% 75.95%±0.48%

Uniform 89.92%±0.45% 91.71%±0.36% 86.59%±0.66% 91.25%±0.38% 86.69%±0.66%

Exponential 84.15%±0.37% 86.67%±0.37% 80.05%±0.39% 85.82%±0.38% 81.25%±0.39%

Lognormal 80.86%±0.28% 80.18%±0.33% 81.05%±0.25% 83.82%±0.28% 77.36%±0.29%

Weibull 88.07%±0.24% 89.27%±0.24% 85.96%±0.27% 89.30%±0.23% 85.93%±0.27%

Table 1:Model state classification results. The values with 1 in the header, refer to the transition where a model change was
introduced, while the values with 2 in the header refer to a transition where the model was kept constant.

Dist. type Bad model tr. 1 Bad model tr. 2 Bad model both Tr. flips Tr. merge

Normal 1.44% 2.03% 1.11% 1.81% 4.54%, [2.78%−5.56%]

Uniform 3.29% 3.29% 2.92% 0.74% 1.39%, [1.39%−2.78%]

Exponential 5.28% 3.52% 1.81% 2.96% 3.94%, [2.78%−5.56%]

Lognormal 15.15% 12.45% 8.03% 7.39% 5.31%, [2.92%−5.84%]

Weibull 7.39% 5.82% 4.81% 3.98% 3.41%, [2.38%−4.76%]

Table 2:Model estimation results. The values with 1 in the header, refer to the transition where a model change was
introduced, while the values with 2 in the header refer to a transition where the model was kept constant. The values
in [ ] in the Transition merge column refer to the expected rate of transition merges due to the experiment setup.

One can also see that the lognormal distribution re-

sults are by far the worst for the CAA. However, the-

oretically there should be no significant limitation for

this distribution type. A high amount of bad models

can be traced back to transition flips. After a deeper

analysis, it turned out that 90% of the models classified

to be bad can be traced back to heavily tailed lognormal

distributions. This is most probably a result of inaccu-

rate KDEs and a too small window size. We assume

that by increasing the window size these model prob-

lems would disappear.

The CAA is highly parallelized in a time step and it

has a low memory footprint (around 1-2 GB-s) com-

pared to the previous algorithm described in [2] and

[3]. As a result, the average execution time varied be-

tween 1-5 minutes which is superior to the old algo-

rithm. However, this is still around 10−20x higher than

the same VSS without the CAA.

4 Conclusion

The experiments show that the CAA is efficiently able

to track and to adapt to model changes in CHnMMs

positively affecting the symbol classification accuracy.

Doing so does not affect the capability of withstanding

changes on transitions where no change occurred.

By using the algorithm, the construction of CHnMM

based VSSs is possible without deep analysis of the

model parameters. It is enough to inject a distribution

independent sample upon start.

The CAA also resolves some old practical issues

with Proxel-based simulations, like the problem of

concurrent exponential distributions, limitation through

fixed distribution types and runtime changes of the

model, which were not manageable before.

There is no theoretical limitation that would speak

against the application of the CAA. It results in a very

high probability of better evaluation and decoding re-

sults than manually parametrized models. Therefore, its

usage is generally encouraged. However, if higher exe-

cution times are not acceptable, one might want to com-

promise and enable the functionality only on selected

transitions.

Applications and Future Research The CAA

opens up more accurate simulation possibilities for

non-stationary models, like production lines and other

human-influenced system.
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Future research possibilities include the general-

ization of the CAA for VSS related problems beside

CHnMMs. The transition flip problem could be reduced

by adding penalty terms for transition movements. Ad-

ditionally, the variable pruning can be evaluated as gen-

eral pruning algorithm for VSSs.
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