
211

S N E B E N C H M A R K N O T E

Solving ARGESIM Benchmark CP2
’Parallel and Distributed Simulation’
with Open MPI/GSL and Matlab PCT
– Monte Carlo and PDE Case Studies

David Jammer1,2*, Peter Junglas2, Sven Pawletta1

1Research Group Computational Engineering and Automation, University of Applied Sciences Wismar, Philipp-
Müller-Straße 14, 23966 Wismar, Germany;
*david.jammer@cea-wismar.de
2PHWT-Institut, PHWT Vechta/Diepholz, Am Campus 2, 49356 Diepholz, Germany;

SNE 32(4), 2022, 211-220, DOI: 10.11128/sne.32.bncp2.1062

Received: 2022-10-19; Revised: 2022-11-10

Accepted: 2022-11-15

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. The ARGESIM benchmark CP2 provides three
different tasks to study current technologies for the par-
allelization of simulation programs. The first task is the
Monte Carlo study. In this study, a spring-mass system
is simulated with different damping factors. The second
task is a Latice Boltzmann simulation in which the flow
of a fluid in a special geomentry is simulated. The third
problem is a partial differential equation (PDE) describing
a swinging rope, which is solved by the Method of Lines.
TheMonte Carlo and the PDE study are solved here, each
one with two different methods: The first one applies the
standard MPI message passing library together with the
GNU Scientific Library, the second one uses Matlab from
The MathWorks in combination with the Parallel Com-
puting Toolbox. A special focus of this work is on the
parallel processing functions provided byMatlab. The so-
lutions are compared with each other in terms of perfor-
mance and scalability. In most cases, the solutions with
OpenMPI and GSL were faster than the solutions with
Matlab PCT. The Matlab PCT offers many functionalities
and applications to accelerate, but these usually have a
poor runtime behavior.

Introduction
In simulation technology, methods to accelerate simu-

lation were investigated in the early phases. The first

benchmarks (CP1) of the SNE series dealing with this

topic date back to 1994 [1] and were successfully solved

and investigated with different technologies and on dif-

ferent platforms. This benchmark got an update (CP2)

in 2007 [2] to adapt it to the increasing computing

power. Unfortunately, no further solutions were sub-

mitted after this change. Since 2007, the computing

power and the architecture of the hardware and software

have changed a lot, so the parallel benchmarks should

be brought back to life.

In this paper, two tasks of CP2 will be investigated.

The tasks were implemented with two different tech-

nologies.

The first technology is the Message Passing Inter-

face (MPI) [3] in version 4 together with the GNU Sci-

entific Library (GSL) [4]. MPI was developed in the

early 1990s and standardized in 1994. Since then MPI

has been developed continuously and is still one of the

standard technologies in parallel processing. MPI has

been implemented by several institutes. In this paper

Open MPI 4 [5] was used. GSL was developed in 1996

by M. Galassi and J. Theiler from Los Alamos National

Laboratory and is currently updated and further devel-

oped. The solutions designed with it were implemented

in the C language. Thus, the first solution is based on

open source solutions.

SNE 32(4) – 12/2022

212

Jammer et al. Benchmark CP2: Monte Carlo and PDE Study with Open MPI/GSL and Matlab PCT

The second technology is based on Matlab. In 1995

C. Moler published that The Mathworks would not be

active any longer in the field of parallel processing with

Matlab because of unsuccessful investigations [6]. But

already in the early 1990s several open source projects

had started to enable parallel processing with Matlab

and similar systems. One of the first projects was de-

veloped by our research group and was presented on

the Matlab Conference 1995 [7]. This development

resulted in the Distributed & Parallel Toolbox [8]. In

the following decade a number of similar open source

projects appeared [9]. In 2004 The Mathworks adopted

these developments eventually and published the first

version of the Distributed Computing Toolbox [10],

which became later the Parallel Computing Toolbox

(PCT) [11]. The investigations in this paper are based

on the PCT Version 7.4.

The computations were performed on the Seneca

cluster of the PHWT-Institut. It consists of 3 nodes that

communicate with each other over the high-speed In-

finiBand network. Table 1 lists the data from Seneca.

1 Initial Investigations
One of the most important factors in parallel processing

is communication. For an application to be significantly

accelerated by parallel processing, high communication

performance is required. In the HPC domain, special

high-speed networks are used for this purpose, which

are very expensive but have great advantages over stan-

dard technologies. A common high-speed network is

InfiniBand from NVIDIA (former Mellanox), which is

also used in Seneca. The big advantage of InfiniBand

is its low latency and high data transfer rate. To make

the results of this benchmark comparable between ma-

chines with different architectures, we will initially pro-

vide some results of corresponding measurements.

Figure 1 displays the round trip time and the trans-

mission rate between two cores of different nodes as a

function of the packet size.

If the packet size approaches 0, then this corre-

sponds approximately to the latency. This latency is

approx. 3 μs for Seneca. The maximum transmission

rate is approx. 96 GBit/s.

Another communication medium is the main mem-

ory. Since the multicore technology has been strongly

enhanced for several years and the performance contin-

ues to increase, it is also used massively in the HPC

domain. The AMD processors used are based on the

NUMA (Non-Uniform Memory Access) architecture.

Nodes 3

Cores 288

Processors AMD Epyc 7552

Main memory 1536 GiByte

High-speed network 100 GBit/s InfiniBand

Management network 1 GBit/s Ethernet

Operating system OpenSuse Leap 15.3

Middleware OpenHPC

Cluster management Warewulf

Job Scheduler SLURM

Software GCC 9.3.0

GSL 2.6

open MPI 4.1.1

ucx 1.13.0

libfabric 1.13.0

hwloc 2.1.0

Matlab R2021a

Table 1: Seneca hardware and software overview.

Two investigations can be carried out here, which

measure different aspects of the communication via the

memory inside one node: Firstly, the exclusive commu-

nication between two cores (cf. Figure 2), and secondly,

the simultaneous communication of several cores. Fig-

ure 3 shows the corresponding transfer rate as a function

of the number of cores.

In Figure 2, it is noticeable that a maximum of ap-

prox. 200 GBit/s is at a packet size of 128 KiByte. For

larger packets, the transfer rate is 100 GBit/s. The la-

tency (packet size against 0) is approx. 0.4 μs.

The transfer rate shown in Figure 3 reaches a maxi-

mum of approx. 150 GiByte/s. In this measurement, 1

GiByte was copied back and forth 500 times per core.

1024 2048 4096 8192
Package size in KiByte

0

20

40

60

80

100

Sp
ee

d
in

 G
Bi

t/s

0

500

1000

1500

R
ou

nd
 T

rip
 T

im
e

(R
TT

) i
n
μs

Figure 1: Communication between two nodes via InfiniBand.

SNE 32(4) – 12/2022

213

Jammer et al. Benchmark CP2: Monte Carlo and PDE Study with Open MPI/GSL and Matlab PCT

256 512 1024 2048
Package size in KiByte

0

50

100

150

200

Sp
ee

d
in

 G
Bi

t/s

0

50

100

150

200

250

300

350

R
ou

nd
 T

rip
 T

im
e

(R
TT

) i
n
μs

Figure 2: Communication between two cores via main

memory.

0 20 40 60 80 100
Number of Cores

0

50

100

150

200

Tr
an

sf
er

 ra
te

 in
 G

iB
yt

e/
s

Figure 3:Memory bandwidth depending on the number of

cores.

In a classic UMA (Uniform Memory Access) archi-

tecture, the transfer rate would remain constant because

the instances share the memory channel to the main

memory. However, since a NUMA architecture has sev-

eral memory channels, the transfer rate increases be-

cause more memory channels are used.

2 Monte Carlo Study
The first benchmark is a Monte Carlo study. In this

benchmark, the behaviour of a spring-mass system with

different damping factors has to be calculated. The

spring-mass system is described by the usual differen-

tial equation:

mẍ+dẋ+ kx = 0

with the parameters:

x(0) = 0, ẋ(0) = 0.1,k = 9000,m = 450

The damping factor d is randomly selected using a uni-

form distribution with the range [800,1200].

In [2] nReps = 1000 simulations with a step size of h
= 0.01 in the period from 0 to 2 are required. The mean

value of x(t) is then to be calculated from the simu-

lations. Since the computing power of computers has

increased significantly since the publication of [2], we

have increased the load of the task. For the following

solutions, nReps = 10,000,000 simulations were per-

formed with a step size of h = 0.001.

2.1 Open MPI with GSL

This section presents the solution using Open Message

Passing Interface (MPI) [5] and the GNU Scientific Li-

brary (GSL) [4]. The program is written in the C pro-

gramming language. The differential equation is trans-

formed into the usual first order form:

ẏ1 = y2

ẏ2 =− d
m

y2 − k
m

y1

and then solved with an RK4 solver with fixed step

size. GSL provides all necessary functions and data

structures for this task. According to [12], the devel-

opment of a parallel solution, starting from the entire

problem, consists of the steps partitioning, communi-

cation, agglomeration, and mapping. The partitioning

of the Monte Carlo study results in the following tasks:

nReps simulations, calculation of the mean value and

the storage of the results. The communication includes

the transfer of the results of the nReps simulations to the

averaging operation and from there to the storage of the

results. The aim of the subsequent agglomeration step

is to reduce communication and combine tasks. Here,

several simulations per process and the computation of

corresponding partial sum vectors are combined. This

reduces the communication per process to the transmis-

sion of the partial sum. Another part is the addition

of all partial sum vectors, the averaging and the stor-

age. The addition of all partial sum vectors is done col-

lectively via a Reduce function and the averaging and

storage is combined as one task and assigned to an ar-

bitrary process. The mapping is done automatically by

the middleware and the operating system.

The solution was designed as SPMD (Single-

Program Multiple-Data) as shown in Figure 4. Since

all simulations need the same amount of computation, a

load balancing scheme is unnecessary.

SNE 32(4) – 12/2022

214

Jammer et al. Benchmark CP2: Monte Carlo and PDE Study with Open MPI/GSL and Matlab PCT

Start

initialize random number generator
calculate the local number of repetitions l_rep

repeat l_rep times:
compute damping factor

run simulation

MPI_Barrier

world_rank == 0

y1 = MPI_Reduce(y1vec, MPI_SUM)
compute the mean position vector

MPI_Reduce(y1vec, MPI_SUM) save results

Stop

compute partial sum y1vec

Figure 4: Program flowchart of the monte carlo study with

OpenMPI.

Therefore, the number lrep of local repetitions can be

computed beforehand by distributing the total number

n uniformly among the tasks. Then each MPI process

calculates the needed random numbers and performs its

simulations. The seed of each local random number

generator is initialized with the ID of the MPI process

to get independent random numbers for each process.

The position values y1 are added locally after each sim-

ulation, thus only one vector has to be transferred after-

wards. After all processes have finished their compu-

tations, the addition of the partial sum vectors is done

collectively by MPI_Reduce. Now, the MPI process

with rank 0 contains the result of the addition and only

has to calculate the average and finally store the data.

2.2 Matlab PCT

The PCT can be used for parallel programming on a

local multi-core machine or on a cluster like Seneca. To

use PCT, one first creates a parallel pool with a given

number of processes, called "workers". On a cluster,

Matlab always requires an additional worker as the top

instance. This is important, because this worker also

needs a license. PCT defines several different models

for parallel programming.

For the Monte Carlo study three technologies have

been used: parfor, spmd and parsim.

The solution with parfor is very easy to implement,

because the decomposition is performed implicitely.

Parfor works like a normal for-loop with the only dif-

ference that the iterations of the for-loop are distributed

to the workers. Unfortunately, the PCT documentation

doesn’t describe the scheduling strategy of the parfor

loop, it simply states that the iterations are done in non-

deterministic order [11]. However, it is not important

for this Monte Carlo study, since the computational ef-

fort of the simulations is always the same. A parfor

loop is only possible if the iterations are completely in-

dependent from each other. In our case, this condition

is obviously fulfilled. A vector D with nReps random

numbers is calculated in the sequential section before

the parfor loop. In the parfor section, only the ode45
function is called and the sum is formed as in Listing 1.

Listing 1: Matlab parfor-loop

parfor i=1:nReps

[tout, yout] = ode45(@(t,y)

ode(t,y,K, D(i),M),

tvec,y0);

ysum = ysum + yout(:,1);

end

The communication happens here implicitly by the

calculation of the sum using the variable ysum, which

was defined in the sequential section and can be used by

all workers. After the parfor loop only the mean value

remains to be computed.

Another solution was implemented and investigated

with spmd. The spmd function creates a parallel

section that is executed by each worker. The num-

ber of workers is given by the size of the paral-

lel pool and can be determined in the spmd section

via the variable numlabs. The index of a worker

is stored in the variable labindex. Data can be

sent explicitely between workers using the functions

labSend and labReceive. For synchronization the

function labBarrier is available. The solution with

spmd is similar to the solution with Open MPI from

section 2.1. In the spmd section, the local number of

repetitions lrep is calculated and then the simulations

are performed. A special challenge is the handling of

anonymous functions, because they cannot be defined

in an spmd section. But they are needed to modify the

parameters of the differential equation.

SNE 32(4) – 12/2022

215

Jammer et al. Benchmark CP2: Monte Carlo and PDE Study with Open MPI/GSL and Matlab PCT

The easiest way to realize this, is to create a function

outside the spmd section, which contains the ode45 call

and the definition of the anonymous function. This is

shown in Listing 2.

Listing 2: Matlab ode45 call with anonymous for the spmd

section

function [t,y] = odecall(tvec,y0,K,D,M)

[t, y] = ode45(@(t,y) ode(t,y,K,D,M),

tvec, y0);

end

Similar to section 2.1 the position values are added and

the sum is calculated by the general reduction function

B = gop(fcn,A,destination), where @plus
is used for fcn to achieve a collaborative summation.

The third solution was realized with Mat-

lab/Simulink and parsim. For this purpose, the

spring-mass system must be modeled by a signal

flowchart in Simulink (cf. Figure 5). Afterwards, only

Figure 5: Spring-mass system as signal flowchart.

the input data must be defined as Simulink simulation

input objects and then the simulations can be started

with parsim. After the simulations are finished, the

mean value can be calculated from the results. This

solution is the simplest of all, but it must be noted that

all results are available before averaging, which can

lead to a high memory overhead.

2.3 Comparison of solutions

All approaches resulted in the same solution as shown

in Figure 6.

Figure 7 shows the runtime and the speedup re-

sults of the Monte Carlo study. Apart from the parsim

method, which has no speedup at all, the other imple-

mentations show a significant speedup. The runtimes

of the two Matlab solutions are almost identical and

have a significantly higher runtime than the C imple-

mentation. The transition from one node to two nodes is

interesting: The Matlab implementations show a jump

0 0.5 1 1.5 2
time

-0.01

0

0.01

0.02

m
ot

io
n

Figure 6: Plot of the mean motion.

50 100 150 200 250 300
Number of Cores

0

100

200

300

tp
1/tp

n

Speedup

Perfect
C Open MPI + GSL
Matlab PCT spmd
Matlab PCT parfor

50 100 150 200 250 300
Number of Cores

10 1

10 2

10 3

10 4

10 5

R
un

tim
e

in
 s

Runtime

C Open MPI + GSL
Matlab PCT spmd
Matlab PCT parfor

Figure 7: Runtime and speedup history of the monte carlo

implementations.

in speedup in that area, whereas the C implementation

does not have this jump.

The solution with Matlab and parsim did not result

in any significant acceleration (cf. Figure 8). Also, the

number of simulations had to be reduced significantly

to cope with the high memory requirements of this so-

lution.

Another interesting investigation in a Monte Carlo

study is the scaleup. The execution time is constant in

a scaleup approach, so only the spmd method was in-

vestigated in Matlab. In an spmd section, the maximum

execution time can be implemented directly. Here, a

time of 60 seconds was specified in which the simula-

tions are carried out. Figure 9 then shows how many

simulations are calculated depending on the number of

cores used.

SNE 32(4) – 12/2022

216

Jammer et al. Benchmark CP2: Monte Carlo and PDE Study with Open MPI/GSL and Matlab PCT

10 20 30 40 50 60
Number of Cores

0

5

10

15

20

tp
1/tp

n

Speedup

Perfect
20,000 Simulations
10,000 Simulations

10 20 30 40 50 60
Number of Cores

10 2

10 3

10 4

R
un

tim
e

in
 s

Runtime

20,000 Simulations
10,000 Simulations

Figure 8: Runtime and speedup history of the monte carlo

parsim implementation.

The C implementation shows an almost linear be-

havior, whereas the Matlab/spmd implementation be-

haves strangely: The transitions from one (96 cores) to

two (192 cores) nodes and from two (192 cores) to three

(288 cores) nodes are striking. In these transitions the

number of simulations increases abruptly.

In comparison, the C implementation clearly shows

the best results, as was expected. Nevertheless, the Mat-

lab implementations can provide reasonable speedup

with little programming effort.

3 Partial Differential Equation
Case Study

The second benchmark investigated in this article is the

solution of a partial differential equation describing a

swinging rope:

∂ 2u
∂x2

=
1

ν2

∂u
∂ t2

As suggested in the benchmark, the equation will be

solved with the method of lines. For this purpose, the

left side of the differential equation is replaced by a cen-

tral difference quotient of 2nd order:

50 100 150 200 250
Number of Cores

50

100

150

200

250

N
p/N

1

Scaleup

Perfect
C Open MPI + GSL
Matlab PCT spmd

50 100 150 200 250
Number of Cores

10 3

10 5

10 7

10 9

N
um

be
r o

f S
im

ul
at

io
ns

Number of Simulations

C Open MPI + GSL
Matlab PCT spmd

Figure 9: Scaleup history of the monte carlo

implementations.

∂ 2u
∂x2

≈ ui+1(t)−2ui(t)+ui−1(t)
(L

N)
2

Here L corresponds to the length of the rope, N to

the number of equidistant intervals used for space dis-

cretization and i to the location. Applying this method,

a 2nd order differential equation is obtained for each

location point:

üi =
ν2

k2
(ui+1 −2ui +ui−1), i = 1, ...,N −1

with

k := L/N

The initial values are:

ui(0) = 2
h
N

i, i = 1, ...,
N
2

ui(0) = 2h(1− i
N
), i =

N
2
, ...,N −1

and

u̇i(0) = 0, i = 1, ...,N −1

SNE 32(4) – 12/2022

217

Jammer et al. Benchmark CP2: Monte Carlo and PDE Study with Open MPI/GSL and Matlab PCT

The boundary values are given by

u0(t) = uN(t) = 0, t ∈ [0, tend]

The parameter values are given as ν = 0.06, L = 0.5,

h = 0.05 and tend = 10. The benchmark specifies the

space discretization as N = 500 and the size of time

steps as dt = 0.01. In the following, other values will

be used to adapt to the increase in computing power.

As a solution, the time evolution of the amplitude at the

points x = 3
4 L and x = 1

2 L is to be presented, as well

as the space evolution at the points in time t = 5 and

t = 8 and a surface plot, showing the complete solution

u(x, t).

3.1 Open MPI with GSL

Using the design method for parallel programs de-

scribed in section 2.1 results in a very fine grained de-

scription: The main tasks are the computations of one

time step at one position. This leads to a huge amount of

communication, which will be reduced drastically after

the proper agglomeration step. Since the resulting strat-

egy is fairly standard, we will skip these details and im-

mediately describe the overall parallelization strategy.

The basic idea is to distribute contiguous uniformly

sized sections of the rope to the tasks, in the order of

the taskIds (cf. Figure 10). Note that the local sections

of the first and last taskIds include the endpoints u0 and

uN , which contain the fixed boundary values. The al-

gorithm consists of a time loop, where each iteration

starts with an exchange of the necessary boundary val-

ues, followed by one step of an RK4 ODE solver. A

barrier between steps synchronizes the tasks to guaran-

tee the correct internal boundary values. As part of the

steps all necessary results are collected by the task with

taskId 0 and stored.

taskId 1 2 30

Figure 10: Decomposition of space points.

To organize the communication and to simplify the

local computations so called “ghost points” ([13]) are

used (cf. Figure 11): The local u arrays are extended

by one additional point at each end (or only one end for

the first and last task). In the communication phase the

boundary values are stored here, so that all necessary

values are readily available at the computation phase.

taskId

1

2

3

0

Figure 11: Decomposition including ghost points.

3.2 Matlab PCT

Three solution approaches were investigated using Mat-

lab PCT. The first one (“loop-based”) closely mim-

ics the MPI version adopting the spmd environment

and the labSend, labReceive, labindex and

labBarrier functions. As in MPI the definition of

the ODE is done in a loop over the space points. For

the tedious task of mapping between the global and

local indices – prone to typical one-off errors – Mat-

lab PCT supplies the function codistributor1d,

which provides all necessary details.

For the second approach (“matrix-based”) the vari-

ables ui are combined in a vector u and the ODE is

rewritten in matrix-vector form as

ü = Au

with

A =
v2

k2
·

⎛
⎜⎜⎜⎜⎜⎝

−2 1 0 0 · · ·
1 −2 1 0 · · ·
0

. . .
. . .

. . . 0

· · · 0 1 −2 1

· · · 0 0 1 −2

⎞
⎟⎟⎟⎟⎟⎠

The local parts of A are computed in an initial phase.

The parallelization follows the pattern of the loop-based

version, only the internal loop over points is replaced by

a matrix-vector multiplication.

The third approach (“codistributed”) applies codis-

tributed arrays, a very convenient tool defined in Matlab

PCT. A codistributed array basically is an array that is

distributed to the workers, but every task can still ac-

cess each element with the usual (global) index. If the

corresponding element is not locally available, it is sent

automatically from the hosting worker to the accessing

one. Auxiliary functions are supplied to find the local

indices, but they are not needed here: Several Matlab

functions, such as the matrix-multiplication, automat-

ically cope with codistributed arrays, so that a simple

call by all workers is sufficient.

SNE 32(4) – 12/2022

218

Jammer et al. Benchmark CP2: Monte Carlo and PDE Study with Open MPI/GSL and Matlab PCT

Of course, the crucial point here is the distribu-

tion scheme. Matlab PCT supplies the usual equal-

partitioning along rows or columns and a block-cyclic

twodimensional partitioning.

Surprisingly, the loop-based approach reached the

shortest runtime, while the matrix-based approach was

slower. The codistributed approach is very elegant from

a programming point of view, since the distribution and

communication parts are done implicitly, but it is ex-

tremely slow compared to the other solutions. Table 2

shows the runtimes of the implementations in compar-

ison. For the further investigations only the loop-based

approach has been used.

solution approach runtime [s]

loop-based 4.23

matrix-based 5.77

codistributed 359.85

Table 2: Running time of the three solutions (nWorker=8,

dt=0.001, N=1000).

3.3 Comparison of solutions

All implementations returned the same result. Figure

12 shows the excitation over time and space.

0 2 4 6 8 10
t

-0.05

0

0.05
excitation over time

x=0.25
x=0.375

0 0.1 0.2 0.3 0.4 0.5
x

-0.05

-0.04

-0.03

-0.02

-0.01

0
excitation over space

t=5
t=8

Figure 12: Solution of the PDE, excitation over time and

space.

Figure 13 shows the required surface plot.

Figure 13: Surface plot for the swinging rope.

Since for the surfaceplot all data over time and space

must be stored, this task does not scale well to large val-

ues of N. The result files become too large at higher

space and time resolutions. In order to increase the

computational effort nevertheless, the collection of all

data was omitted for the following measurements. Only

the excitation over time at the locations x = 3
4 L and

x = 1
2 L and the excitation over space at the times t = 5

and t = 8 were collected and stored.

The runtime of the two implementations Open-

MPI/GSL and Matlab PCT/loop-based was investigated

depending on the number of processes. For compari-

son, runs with N = 200,000 and N = 1,000,000 have

been studied. The results of the speedup analysis are

shown in Figure 14 and 15. A significant speedup was

reached in all scenarios. The C implementation with

Open MPI/GSL reached the lowest runtimes and also

the highest speedups. The runtime was reduced from

about 20 minutes (N=200,000) to about 1 minute and

from about 14 hours (N=1,000,000) to about 6 minutes.

This corresponds to a maximum speedup of about

20 for N=200,000 and about 140 for N=1,000,000.

The Matlab PCT/loop-based solution reduced the run-

time from 30 minutes to 2 minutes (N=200,000) and

from about 10 hours (N=1,000,000) to 25 minutes, re-

spectively. This is equivalent to a speedup of 15 for

N=200,000 and 23 for N=1,000,000.

SNE 32(4) – 12/2022

219

Jammer et al. Benchmark CP2: Monte Carlo and PDE Study with Open MPI/GSL and Matlab PCT

50 100 150 200 250 300
Number of Cores

0

100

200

300

tp
1/tp

n

Speedup

Perfect
C Open MPI + GSL
Matlab PCT

50 100 150 200 250 300
Number of Cores

10 1

10 2

10 3

10 4

R
un

tim
e

in
 s

Runtime

C Open MPI + GSL
Matlab PCT

Figure 14: Runtime and speedup history of the PDE
implementations with N=200,000, dt=0.00005
and tend=10.

The bad speedup behaviour for N=200,000 indicates

that this problem is still too small for the hardware,

whereas for N=1,000,000 the MPI/GSL version shows

reasonable speedups even for large core numbers. The

superlinear speedup for one cluster probably is due to

a better use of the memory lines and caches. Interest-

ingly, Matlab PCT is faster than MPI/GSL for one core,

but generally has much less speedup and can’t put more

than one cluster node with 96 cores to good use.

4 Conclusion

In this article, two solutions for each of two tasks of

the ARGESIM CP2 benchmark have been presented

and compared with each other. Both tasks are very

lightweight for today’s computer systems, the sequen-

tial Monte Carlo study takes less than 1 second with

the original parameters. Therefore, the tasks have been

scaled up considerably. A revision of the CP2 bench-

mark should be scalable and allow for parameters that

lead to runtimes of 30 minutes or more.

As expected, the implementations in C with Open

MPI/GSL generally reached shorter runtimes and rea-

sonable speedups for up to more than 100 cores, es-

pecially for large problem sizes. The basic Matlab

PCT solutions using parfor or spmd showed good

50 100 150 200 250 300
Number of Cores

0

100

200

300

tp
1/tp

n

Speedup

Perfect
C Open MPI + GSL
Matlab PCT

50 100 150 200 250 300
Number of Cores

10 5

R
un

tim
e

in
 s

Runtime

C Open MPI + GSL
Matlab PCT

Figure 15: Runtime and speedup history of the PDE
implementations with N=1,000,000, dt=0.00001
and tend=10.

speedups for up to over 100 cores in the Monte Carlo

study, while in the PDE example good speedups could

only be reached for up to 30 cores. Using high-level

methods like parsim or codistributed arrays produced

elegant looking programs, but they could not compete

at all due to their huge execution times.

Another problem is the insufficient documentation

of Matlab PCT: Its authors try to spare the reader most

internal details, such as the load-balancing scheme of

parfor or the exact behaviour of codistribution-aware

functions, which are important for good parallelization

strategies.

In a subsequent work the third task of the CP2

benchmark, the Lattice Boltzmann simulation, will be

solved, again using implementations in OpenMPI and

Matlab PCT.

References

[1] Breitenecker F, Husinsky I, Schuster G. Comparison of

Parallel Simulation Techniques. SNE Simulation News
Europe. 1994;4(10):21–22. ISSN 0929-2268.

[2] Breitenecker F, Höfinger G, Pawletta T, Pawletta S, Fink

R. ARGESIM Benchmark on Parallel and Distributed

Simulation. SNE Simulation News Europe. 2007;

17(1):53–56. ISSN 0929-2268.

SNE 32(4) – 12/2022

220

Jammer et al. Benchmark CP2: Monte Carlo and PDE Study with Open MPI/GSL and Matlab PCT

[3] MPI: A Message-Passing Interface Standard.

URL https://www.mpi-forum.org/docs/
mpi-4.0/mpi40-report.pdf

[4] Galassi M, et al. GNU Scientific Library Reference
Manual. 3rd ed.

URL https://www.gnu.org/software/gsl/

[5] The Open MPI Project.

URL https://www.open-mpi.org/

[6] Moler C. Why there isn’t a parallel MATLAB. In:

Matlab News and Notes. Spring. 1995; p. 12.

[7] Pawletta S, Pawletta T, Drewelow W. A MATLAB

toolbox for distributed and parallel processing. In: 2nd
International MATLAB Conference. Cambridge. 1995; .

[8] Pawletta S, Pawletta T, Drewelow W, Dünow P.

Distributed and Parallel Application Toolbox for Use
with MATLAB: User’s Guide and Reference Manual,
version 1.3 ed. 1996.

[9] Fink R, Pawletta S, Pawletta T, Lampe B. SCE based

Parallel Processing and Applications in Simulation.

SNE Simulation News Europe - Special Issue on
Parallel and Distributed Simulation Methods and
Environments. 2006;16(2):37–50. ISSN 0929-2268.

[10] The Mathworks Inc. Distributed Computing Toolbox for
Use with MATLAB: User’s Guide, version 1 ed. 2004.

[11] The Mathworks Inc. MATLAB Parallel Computing
Toolbox: User’s Guide, version 7.4 ed. 2021.

[12] Foster I. Designing and Building Parallel Programs -
Concepts and Tools for Parallel Software Engineering.

Amsterdam: Addison-Wesley. 1995.

[13] Gropp W, Lusk E, Skjellum A. Using MPI, third edition
- Portable Parallel Programming with the
Message-Passing Interface. Cambridge: MIT Press.

2014.

SNE 32(4) – 12/2022

