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Abstract. Medical recommender systems are increas-
ing in popularity within the digital health sector. Two
main principles for personalised support are just-in-time
interventions, and adaptiveness of treatment. Interven-
tion concepts using these principals are called JITAIs, and
they aid clients in self-management for health-related is-
sues. In this contribution, the JITAI framework is intro-
duced, and its advantages for recommender systems are
discussed. Mathematically, the JITAI concept can be in-
terpreted as a contextual or regular multi-armed bandit
problem, which is solved via a bandit algorithm. After
discussing several algorithmic strategies of bandit algo-
rithms and elaborating on their differences, the Thomp-
son Sampling strategy is identified as a practical solution
for real-life applications using the JTIAI framework. Sub-
sequently, existing recommender systems based on the
(contextual) multi-armed bandit approach are reviewed,
and the disruption of the algorithm’s learning process by
instances of missing data is found to be a prevalent ob-
stacle. An algorithm called Thompson Sampling with Re-
stricted Context is put forward as a solution, where miss-
ing data is processed within the bandit setting.

Introduction
Digital health practices are expected to revolutionise

the public health sector on a global scale and provide

healthcare solutions to all people regardless of geo-

graphic location and social strata. In digital health, data

is processed with the help of smart and connective de-

vices using advanced computing and artificial intelli-

gence, including machine learning as well as other data

science strategies [1].

A research domain within this framework is the de-

velopment of personalised recommender systems, with

the aim to support the self-management of chronic ill-

nesses, or the facilitation of building habits towards

a more healthy lifestyle. Generally, two principles

are combined: just-in-time assistance, and adaptive-

ness. Recommender systems based on this approach

are called just-in-time adaptive interventions (JITAIs)

[2]. Some JITAIs employ machine learning techniques

to identify the best supportive intervention for the client

out of a pool of possible options, and deliver it at a time

when the client is most receptive, or has the highest

need for it. Mathematically, this problem can be in-

terpreted as a contextual multi-armed bandit problem,

which has its origins in game theory, and aims to find

the option that yields the highest reward under given

circumstances [3].

This contribution introduces the most common ap-

proaches (i.e., algorithms) to solve the problem and pro-

vides an overview of the state-of-the-art mobile health

applications that operate using the (contextual) multi-

armed bandit approach.

1 The JITAI Framework
A pragmatic framework is provided by Nahum-Shani et

al. [6], which can help developers in constructing JITAI

intervention concepts, or may inform the design of a JI-

TAI model. JITAIs are multi-component interventions,

and consist of five key elements: decision points, tailor-
ing variables, intervention options, decision rules, and

proximal outcomes. At a decision point (i.e., a point

in time at which an intervention decision is made), the

decision rules determine which intervention option out

of an array of possible candidates is best to facilitate

a proximal outcome (i.e., the short-term goal the inter-

vention is trying to achieve), based on the contextual

data concerning the client, which is stored in tailoring

variables.
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Together, these components form an intervention

concept, see Figure 1.

Figure 1: Intervention concept for the JITAI design, adapted

from [2].

This definition of the JITAI framework allows for

a variety of applicative options within each component.

For example, decision points may occur at pre-specified

time intervals (e.g., every three minutes), at specific

times of day (e.g., daily at 9 a.m.), or following ran-

dom prompts, depending on how frequent meaningful

changes in the tailoring variables are expected to take

place.

In mathematics and many mathematics-adjacent

fields of application, the JITAI framework can be con-

structed as a contextual or regular multi-armed bandit

problem (see below), due to both concepts being trans-

latable in a natural way.

2 The Multi-Armed Bandit
Problem

The multi-armed bandit (MAB) problem is perhaps the

simplest model for sequential decision making where

the aim is to maximise the cumulative sum of rewards

over a certain time horizon [4].

The original setup describing the MAB problem

shows a player who is faced with k slot machines (col-

loquially known as one-armed bandits) [5]. Identically,

one can imagine a single slot machine with several

arms, thus obtaining the term multi-armed bandit. The

player aims to maximise the cumulative reward from

playing the machines over a certain number of plays,

which holds the intrinsic dilemma of the MAB prob-

lem: the exploration-exploitation trade-off. The player

needs to balance between trying out all arms sufficiently

often to discover which ones are most lucrative (explo-

ration), while concurrently playing the arms that they

have found to yield the highest rewards (exploitation).

General approaches of the MAB problem call the

playing entity the agent, and the process of systemati-

cally playing towards a specific goal is done by a MAB

algorithm. The contextual MAB (CMAB) setting is an

extension of the MAB problem where the player views

additional information about the current situation be-

fore deciding which arm to play, thereby avoiding un-

necessary exploration, and is guided towards the arms

that need to be explored. Therefore, CMABs lend them-

selves to applications in the medical setting, where any

recommender system should base their intervention de-

cisions on the observed health data. In general, CMAB

algorithms are derived from MAB algorithms, so the

algorithmic strategies of the MAB problem are a good

entry point into applied bandit algorithms.

2.1 Bandit Algorithms

A possible option for MABs is to consider the stochas-

tic bandit setting, where the agent chooses an arm at

an iteration point t and subsequently receives a reward

drawn from an arm-specific distribution unknown to the

agent. The agent then improves its arm selection strat-

egy based on the observation, with the goal to estimate

parameters that describe the distributions linked to the

arms, see Algorithm 1 [7]. Then, the agent will exploit

the arm that is estimated to yield the highest reward.

Usually, fixed distributions are assumed for all arms,

and the performance of the algorithm can be quantified

by observing how quickly the optimal arm is identified

through the obtained reward, or, alternatively, the con-

cept of regret [4].

Algorithm 1: Multi-Armed Bandit Algorithm

Input: A = {A1, . . . ,Ak}, R1, . . . ,Rk
for t = 1,2, . . . do

choose arm at ∈ A
receive reward rt ∼ Ri(t)
improve arm-selection strategy with new

observation (at ,rt)

end

Since the true reward distributions are unknown to the

agent, MAB algorithms estimate the expected reward

[8], and their overall performance can be evaluated by

regarding the cumulative sum of rewards over all itera-

tions. Instead of observing how well the algorithm has

done, one can also investigate how often the algorithm

has missed out on the optimal arm.
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At iteration t, the optimal arm is defined as the arm

with the (currently) highest expected reward estimate,

and the regret at t is the difference between the optimal

choice and the arm that the MAB algorithm has actually

chosen.

As an example for a bandit setting, consider the

Bernoulli bandit problem (a special case of the MAB

problem), where all k reward distributions are Bernoulli

distributions. The reward ri(t) the agent receives when

choosing arm at ∈ A at time t is:

ri(t) =

{
1 with probability pi

0 with probability 1− pi
, pi ∈ (0,1)

The parameters pi, i ∈ {1, . . . ,k} are unknown to the

agent [9]. In case of a Bernoulli bandit, the expected re-

ward for chosen action at at t is the success probability

for the arm:

E
[
ri(t)

]
= pat

After choosing an arm, the agent either succeeds (ri(t) =
1) with probability pi, or fails (ri(t) = 0) with probabil-

ity (1− pi). Since the expected reward of the optimal

arm is raopt = maxi(pi), the regret Ra(t) of choosing a

suboptimal arm at time t is denoted by:

Ra(t) = max
i
(pi)− pa(t)

Different simulation runs of the Bernoulli bandit can be

rated in their efficiency: the lower the cumulative regret,

the more efficient the algorithm is in finding and ex-

ploiting optimal options, thus exemplifying how regret

can be practical when comparing different algorithmic

strategies. Even though the Bernoulli bandit gives the

most basic bandit setting, it can be found in many prac-

tical applications, and more complex MAB problems

may be simplified by assuming a Bernoulli distribution

instead of a more advanced one [8].

2.2 Algorithmic Strategies

The main obstacles for solving the Bernoulli bandit

problem are the unknown success probabilities, because

the expected regret cannot be computed. However,

when determining algorithmic performance in a simula-

tion environment, the success probabilities are known,

even though they are assumed not to be, in order to as-

sess the quality of different algorithmic strategies. For a

good strategy, the regret rapidly decreases to zero, thus

the best option is identified quickly, and subsequently

exploited. In contrast, if the value of regret decreases

slowly or never reaches zero, the strategy is considered

poor. Figure 2 shows a sketch of possible regret curves.

Figure 2: Possible regret curves for different MAB algorithm

strategies.

Different strategies are distinguished by how the

exploration-exploitation trade-off is handled. Three po-

tential strategies are: the e-Greedy strategy, the Upper
Confidence Bound (UCB) strategy, and the Thompson
Sampling (TS) strategy.

The e-Greedy Strategy. The e-Greedy strategy ex-

plicitly trades off between exploration and exploitation,

by using the exploration parameter e. A greedy strategy

refers to exploitation without exploring, i.e., choosing

the arm with the highest current reward estimate. This

bears the risk of missing the optimal arm forever, see

the following example:

Let A = {A1,A2,A3} be a Bernoulli bandit with

three arms, and let the (true) success probabilities be:

p1 = 0.3, p2 = 0.7, p3 = 0.8

Furthermore, let the initial success estimates be equal

for all three arms:

e0
1 = 0.5, e0

2 = 0.5, e0
3 = 0.5

Here, arm A1 is overestimated, whereas arms A2 and A3

are underestimated. Since all arms have equally high

success estimates, the agent picks one arm at random.

Let A2 be the agent’s choice, and let r1 = 1. The esti-

mates are updated to:

e1
1 = 0.5, e1

2 = 0.75, e1
3 = 0.5

SNE 32(4) – 12/2022



206

Brunner and Hametner Reviewing Recommender Systems in the Medical Domain

Following a greedy strategy, the agent picks A2

again, and A3 (the optimal arm) will only be explored

if the estimate for A2 drops down to 0.5, which is not

likely to happen, due to the true success probability be-

ing 0.7.

This problem is solved by introducing an explo-

ration parameter e ∈ (0,1), which sets the probability

of performing an exploration step at t, wherein one arm

is chosen randomly. However, the risk remains that the

exploration continues after having identified the opti-

mal arm, since the algorithm forces the agent to select a

(known) suboptimal arm during each exploration step,

thus the regret will never converge to zero.

An alternative is presented by the decaying e-

Greedy strategy, where e is not fixed, but decays over

time. However, an accurate value for the decay is diffi-

cult to determine.

The Upper Confidence Bound Strategy. The

UCB strategy deals with the exploration-exploitation

trade-off in an implicit way. In the previous strategy,

the agent’s knowledge at time t is modelled as a point

estimate, which does not reflect the uncertainty regard-

ing this value. In contrast, the UCB strategy explicitly

models the knowledge uncertainty as confidence inter-

vals, where both the current knowledge (i.e., the mean)

and the related uncertainty (i.e., the width of the confi-

dence interval) are used to guide the arm selection pro-

cess.

In case of the Bernoulli bandit example, the prob-

ability estimates et
1,e

t
2,e

t
3, are substituted by UCBs for

each arm. This principle is called "optimism in front of

uncertainty": the uncertainty about the expected reward

is expressed as a confidence interval, and the expected

reward is estimated optimistically as the upper bound of

that confidence interval.

Thus, there are two reasons why the UCB is high:

the arm has not yet been explored, resulting in much

uncertainty about the success probability, or the arm

has been found to be a good choice, thus there is little

uncertainty about the (high) success probability. This

way, the agent keeps exploring arms that have not yet

been proven to yield low rewards instead of arms that

produce low rewards with high certainty [10].

There are different ways to derive UCBs, for exam-

ple via the Hoeffding equation, or the Bayes theorem.

However, computing UCBs can be difficult, depending

on the assumed distributions.

The Thompson Sampling Strategy. The TS

strategy works similarly to the previous strategy, but an

agent following this strategy picks an arm randomly, ac-

cording to its probability to be the best. The Bayesian

update rule, which is derived from the Bayes theorem,

lies at the heart of the TS strategy. A general formula-

tion of the Bayesian update rule is

Posterior ∝ Likelihood×Prior

In practice, it means that, once an arm is chosen,

the estimates representing the distribution of the arm

are updated with the help of the reward observation.

The conjugate property of prior-likelihood combina-

tions plays an important part when updating distribu-

tions. The use of the Bayesian update rule is only rec-

ommended if the updated distribution (i.e., the poste-

rior) is easily calculated, which is the case for conjugate

prior-likelihood combinations. In a Bernoulli bandit,

the conjugate combination is given by the Beta distri-

bution.

TS is best explained when investigating the Beta-

Bernoulli prior-likelihood combination. The Bernoulli

distribution depends on the success parameter p, which

needs to be estimated. The Beta distribution as the prior

(and posterior) represents the uncertainty about p. Its

parameters α and β correspond to successful and failed

draws: if rt = 1, α is upped by 1, and if rt = 0, β is

upped by 1, according the Bayesian update rule. The

density function of the Beta distribution changes with

each reward observation whenever the arm is chosen,

and congregates around the estimated success parame-

ter et ∼ p. Instead of calculating statistical quantities

concerning p, it is sufficient to draw a random variable

from the Beta distributions at t, and the arm with the

highest sample value is chosen by the agent, see Algo-

rithm 2.

Empirical evaluation has shown that TS algorithms are

more robust against delayed, or batched, feedback in

applications for advertising and news article recommen-

dations modelled as a CMAB problem [11], and that

it has lower regret in the long run compared to UCB

algorithms [12]. Even though the theoretical under-

standing of TS is still limited, optimal regret bounds

on the expected regret exist for the MAB problem with

Bernoulli distributions [8], and theoretical guarantees

are provided for a TS algorithm equipped to solve the

CMAB problem [13].
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Algorithm 2: Thompson Sampling strategy

Input: A = {1, . . . ,k}, initial parameters αi,βi,

auxiliaries Si = Fi = 0

for t = 1,2, . . . do
for i = 1, . . . ,k do

Draw θi according to Beta(αi +Si,βi +Fi)

end
choose arm at = j = argmaxi θi
receive reward rt ∼ Bernoulli(e j)
if rt = 1 then

S j = S j +1

else
Fj = Fj +1

end
end

Furthermore, the applicability of the TS strategy to

any conjugate prior-likelihood combination facilitates

the increase of model complexity beyond Bernoulli dis-

tributions without increasing computational complexity

[9].

3 JITAIs and CMABs
The CMAB problem setup provides a natural model for

developing digital health interventions of the JITAI de-

sign. In the previous section, MAB algorithms are dis-

cussed as a way of solving the MAB problem. From

this, three main elements in a MAB algorithm can be

derived: points in time (also trials), a set of arms, and

respective reward distributions. The contextual bandit

setting adds one more element: a context vector xt ∈R
d ,

which holds the additional information that the agent

views before selecting an arm during each trial. De-

pending on the chosen method of implementation, ex-

ploration and exploitation are balanced in order to min-

imise the cumulative expected regret.

Section 1 introduces the five components of the JI-

TAI design, and explains how they interact. There are

similarities in the formulation of both concepts, making

the translation easy: decision points denote the trials,

tailoring variables represent any contextual information

in the form of a vector, and the possible intervention op-

tions serve as the arms of a bandit. Reaching the prox-

imal outcome is equal to minimising the regret at t, or,

in case of a Bernoulli bandit, succeeding at a trial [14].

The decision rules can be viewed as a mapping between

the current values of the tailoring variables and the in-

tervention options. This mapping is done by the bandit

algorithm. Table 1 summarises the analogies.

JITAI framework CMAB concept

Decision points Trials

Tailoring variables Context vector

Intervention options Arms

Proximal utcome Rewards

Decision rules Bandit algorithm

Table 1: Representation of the analogy between the
elements of the CMAB approach and the
components of the JITAI design.

Due to its setup and adaptability, the JITAI design is

favoured for personalised recommender systems. Since

CMABs are most convenient for algorithmic implemen-

tation of JITAIs, by transitivity, recommender systems

are best realised via implementing and solving a CMAB

problem.

4 Medical Applications using
(C)MABs

It is already common practice to use (C)MAB algo-

rithms for researching personalised adaptive interven-

tions in digital health. In the past decade significant

progress has been made in creating functional appli-

cations that work in a (C)MAB setting, adapting to a

client’s intervention preferences in real time, as part of

the trend towards reinforcement learning methods.

Medical recommender systems are multi-faceted,

and the algorithm for intervention decisions is only one

cog in a delicate machine. Mechanisms must be in place

so that the decision rules can still function in case of

missing, or erroneous, data, without compromising the

algorithm’s learning process. Clients must be kept en-

gaged beyond an initial novelty period, so behavioural

psychology plays an important part in the delivery of

intervention suggestions to ensure that intervention en-

gagement prevails over intervention fatigue [2]. Rec-

ommender systems intended for client use address these

issues in different ways.

HeartSteps. HeartSteps is a mobile phone appli-

cation currently available for download in the United

States. Originally tested during at trial for improving

physical activities of individuals with blood pressure

in the stage 1 hypertension range, it delivers activity

suggestions to encourage walking while monitoring the

client’s daily step count with a Fitbit tracker.
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The intervention decisions are made via a CMAB

algorithm that uses TS and the application is designed

to include the delayed effect of treatment. However, the

chosen algorithm cannot deal with missing data within

the decision rules. Instead, a lack of data is compen-

sated outside of the bandit algorithm [15].

MyBehavior. MyBehavior is a mobile phone appli-

cation that delivers personalised interventions for pro-

moting physical activity and dietary health as a JITAI,

via a MAB algorithm. Phone sensory data is used to de-

sign unique recommendations for a client, with the goal

to find activity suggestions that maximise the chance of

daily calorie burns. The application records data ev-

ery minute, and issues an activity suggestion once each

morning. It then analyses the location tagged activi-

ties to find patterns that are representative of the client’s

behaviour. Additionally, MyBehavior allows clients to

self-report exercise and food intake, which is backed by

a crowd-sourcing database. Like HeartSteps, the deci-

sion rules cannot compensate for instances of missing

data [16].

PopTherapy. PopTherapy is a mobile phone ap-

plication that helps clients cope with stress and

depression-related symptoms based on cognitive be-

havioural theory technology. Intervention suggestions

are issued after a request is prompted by the client, and

the goal is to maximise stress reduction. The applica-

tion uses a CMAB algorithm combined with the UCB

approach to select an intervention from a series of stress

management strategies. However, the bandit algorithm

requires knowledge of the correct model for the reward

function [17] and, as is intrinsic to the UCB strategy,

bases its arm selection process deterministically on his-

torical data [15].

5 Conclusion and Outlook

Digital health is currently at the forefront of biomed-

ical research, with recommender systems promising

easier access to treatment for a variety of chronic ill-

nesses, mental health challenges, and general life im-

provements. Intervention concepts that combine just-

in-time support and adaptiveness of treatment (JITAIs)

are aiming to provide personalised support to clients at

points in time when they need it most, or are most re-

ceptive to it, based on the processing of health data.

As can be seen from existing recommender systems, 
the mathematical concept of (C)MABs is a convenient 
way of implementing JITAIs as real-life applications.

Different strategies for (C)MAB algorithms are 
available, and a thorough comparison of the most com-

mon approaches shows that the TS strategy stands out 
in terms of arm selection performance, adaptivity, and 
computational effort. Theoretical knowledge about TS 
is still sparse. However, in setups where regret is 
bounded, the algorithm is guaranteed to identify arms 
that are close to optimal options eventually. Thus, when 
investigating algorithmic strategies for JITAI-backed 
recommender systems, consideration should be given to 
TS above others, when applicable to the research ques-

tion.

Furthermore, consideration should also be given to 
an extension of TS called Thompson Sampling with Re-
stricted Context by Bouneffouf et al. [18], where the 
agent only observes limited context (i.e., a restricted 
context vector) at the cost of a slight decrease in perfor-

mance. This setting offers a natural way of dealing with 
instances of missing data by simply disregarding it, and 
the lack of data can be addressed within the bandit set-

ting while the learning process of the bandit algorithm 
remains mostly uncompromised.
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