
195

S N E T E C H N I C A L N O T E

Implementing Standard Examples with NSA-DEVS
David Jammer1,2, Peter Junglas2*, Thorsten Pawletta1, Sven Pawletta1

1Research Group Computational Engineering and Automation, University of Applied Sciences Wismar,
1Philipp-Müller-Straße 4, 23966 Wismar, Germany; *peter@peter-junglas.de
2PHWT-Institut, PHWT Vechta/Diepholz, Am Campus 2, 49356 Diepholz, Germany;

SNE 32(4), 2022, 195-202, DOI: 10.11128/sne.32.tn.10623

Received: 2022-09-27; Revised: 2022-11-07

Accepted: 2022-11-15

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. To utilize the PDEVS formalism for the practi-
cal modeling and simulation of discrete-event systems,
the recently proposed variant NSA-DEVS combines the
Mealy behaviour of RPDEVS with a simple simulator al-
gorithm by employing infinitesimal time delays. To fur-
ther test the practical usefulness of this new approach,
four simple systems showing non-trivial event-cascades
are modeled and simulated within a concrete NSA-DEVS
environment: A comparator-switch model, a digital cir-
cuit with flip-flops, a basic queue-server system and a
more complex queuing system. Their simple implemen-
tations show that the potentially large number of delay
parameters in NSA-DEVS in practice reduces to a single
default value, which only occasionally has to be tuned
to adapt to complex causal behaviour. In addition, by
providing precise formal definitions of the models and
by looking closely at the behaviour of the abstract sim-
ulator, the validity of the NSA-DEVS formalism is further
substantiated.

Introduction

The PDEVS formalism [1] is a well-established method

to concisely describe the hierarchical composition and

dynamic behaviour of discrete-event based models. To

make it directly applicable for concrete modeling and

simulation environments, several variations have been

proposed [2] ranging from the introduction of input

and output ports to the revised version RPDEVS that

incorporates a direct Mealy structure [3]. But as has

been argued in [4], even then problems remain with the

modeling and simulation of causal chains of concurrent

events.

Therefore, the NSA-DEVS formalism (Non-

Standard Analysis DEVS) is introduced in [4] that

solves such problems with the drastic provision of

prohibiting causal concurrent event chains altogether.

To this end it introduces delay times at all inputs and

forbids transitory states, i. e. states with a lifetime of

zero. This allows to retain the mealy-type behaviour

of RPDEVS, but makes the definition of an abstract

simulator [5] much simpler than the corresponding

simulator of RPDEVS [6].

Formally NSA-DEVS leads to the introduction of

a large number of parameters for the necessary delays,

whose usually very small values generally are of no in-

terest at all. Therefore NSA-DEVS uses infinitesimal

delays τ – often mostly given by a standard value τde f –,

and its abstract simulator clearly differentiates between

the infinitesimal and finite time behaviour. This is pos-

sible in a mathematically precise way by resorting to the

set ∗
R of hyperreal numbers, which are a well defined

totally ordered field and form the basis of non-standard

analysis [7]. ∗
R is an extension of the real numbers in-

cluding the formal infinitesimal ε > 0, which is smaller

than any positive real number, and the infinite number

ω := 1/ε . For the definition of NSA-DEVS one mainly

needs the subset of positive finite hyperreals ∗
R
>0
fin , oc-

casionally enlarged by the single value ω , used as the

lifetime of passive states.

The aim of this study is to further examine the

practical usefulness of NSA-DEVS by implementing a

set of examples with interesting event-cascades: The

comparator-switch model from [8], a digital circuit con-

taining flip-flops, a basic queue-server system and a

complex queuing system. We will always start with a

model that only contains default values for all input de-

lays and transitory states, and then make the necessary

fine-tuning to get the desired behaviour.This will show,

whether the possible multitude of delay parameters can

be tamed.

Another focus will lie on the exact definition of a

model and its operation using the defined abstract sim-

ulator.

SNE 32(4) – 12/2022

196

Junglas et al. Implementing Standard Examples with NSA-DEVS

This will add confidence in the validity of the sim-

ulator algorithm, and show that modeling with NSA-

DEVS – as with DEVS formalisms in general – can

lead to a thorough understanding of a model and its be-

haviour.

1 The NSA-DEVS Formalism

The NSA-DEVS formalism is a variation of the basic

PDEVS specification [1], which is divided into a model

description and the definition of an abstract simulator.

Two types of models are defined in PDEVS: an atomic

model that describes the behaviour of a single compo-

nent, and a coupled model, which shows how atomic

models can be combined to build a hierarchical struc-

ture. The abstract simulator specifies the execution of

a PDEVS model. It consists of three kinds of mod-

ules – a root coordinator, a coordinator for each coupled

model and a simulator for each atomic model –, which

exchange different types of messages to coordinate the

behaviour of the atomic and coupled models.

In NSA-DEVS the definition of an atomic model is

similar to the RPDEVS description, formally it is given

by a 7-tuple < X ,S,Y,τ, ta,δ ,λ > with

X set of input ports and values,
S set of states,
Y set of output ports and values,

τ ∈ ∗
R
>0
fin input delay time,

ta : S → ∗
R
>0
fin ∪{ω} time advance function,

δ : Q×X+ → S transition function,
λ : Q×X+ → Y+ output function.

For the definition of X and Y one uses sets Pin and

Pout of input and output names and corresponding sets

Xp and Yp of possible values at input or output port p.

Then the input and output sets are given as

X = {(p,v)|p ∈ Pin,v ∈ Xp}
Y = {(p,v)|p ∈ Pout ,v ∈ Yp}

To describe the simultaneous arrival of input values at

different ports, one additionally needs the set

X+ :=
{{(p1,v1), . . . ,(pn,vn)}|n ∈ N0, pi ∈ Pin,

pi �= p j for i �= j, vi ∈ Xpi

}
and similarly Y+ for simultaneous outputs at several

ports.

To specify the transition function δ and output func-

tion λ , which describe the basic behaviour of the model,

one defines the set Q= {(s,e)|s∈ S, 0≤ e< ta(s)} that

combines a state and the elapsed time e since the last

transition. As in RPDEVS, both event types (incoming

event or internal state change) lead to a call of λ fol-

lowed by a change to a new state according to δ .

The formal difference to RPDEVS is small, but im-

portant: All time values and intervals are meant here

as subsets of the hyperreals ∗
R, and the time advance

function ta may be infinitesimal, but it is always > 0. A

new element is τ , the delay time between the arrival of

a set of inputs and the call of λ and δ . Generally it is

an infinitesimal, often given by a default value τde f = ε ,

and is adapted if the need occurs.

A coupled NSA-DEVS model is defined as in

PDEVS and RPDEVS, it consists of input and output

ports and a set of atomic or coupled models, which are

connected among themselves and to the external ports.

The abstract NSA-DEVS simulator uses the same struc-

ture of modules and messages as in PDEVS, but it im-

plements the input delays and the Mealy-like behaviour.

Its details, the differences to the PDEVS simulator and

an implementation in Matlab can be found in [5].

2 A Comparator-Switch Model
2.1 Theoretical analysis

In [8] a simple example is presented that consists of a

switch controlled by a comparator (cf. Figure 1), such

that an incoming entity is routed to the upper output, if

it has a negative value, and to the lower output, if its

value is positive or zero. As is shown in [8] this model

can not be implemented straightforwardly in PDEVS

using independent reusable components, but works per-

fectly well in RPDEVS. Therefore it is an excellent first

example to test the capabilities of NSA-DEVS.

Figure 1: Example 1: Switch controlled by a comparator.

SNE 32(4) – 12/2022

197

Junglas et al. Implementing Standard Examples with NSA-DEVS

Using the NSA-DEVS specification of an atomic

model, the comparator is defined by

Pin = {in}, Xin = R ⇒ X = {(in,x)|x ∈ R}
Pout = {out}, Yout = {0,1} ⇒ Y = {(out,0),(out,1)}
S =∅, ta(s) = ω
τ = ε ≡ τde f

δ (s,e,x+) = s

λ (s,e,{(in,x)}) =
{
{(out,0)} |x < 0

{(out,1)} |x ≥ 0

The switch component needs an internal state to

store the current routing behaviour of the switch, its for-

mal definition is:

Pin = {in,sw}, Xin = R, Xsw = {0,1}
⇒ X = {(in,x)|x ∈ R}∪{(sw,0),(sw,1)}

Pout = {out1,out2}, Yout1 = Yout2 = R∪{∅}
⇒ Y = Pout × (R∪{∅})

S = {1,2}, ta(s) = ω
τ = rε (r = 1,can be changed as parameter)

δ (s,e,x+) =

{
i+1 |(sw, i) ∈ x+

s |otherwise

λ (s,e,x+) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{(outs,x),(out3−s,∅)}
|x+ = {(in,x)}

{(outi+1,x),(out2−i,∅)}
|x+ = {(in,x),(sw, i)}

∅ |x+ = {(sw, i)}

An important point to note is that the λ -function sends

an empty value to the output port that is currently not

used.

The example model contains two additional atomic

components: a generator that outputs predefined val-

ues at given times, and a terminator that stores the last

incoming value. Their formal definitions are straight-

forward and will not be needed in the folllowing. The

complete model can then be easily defined as a coupled

model.

To analyse the behaviour of this model in detail, we

will retrace the simulator procedures. Generally, when

an input value arrives at time t = 1 at a Mealy-like com-

ponent with a time delay τ ∈ ∗
R, its simulator module

S and the coordinator C of its enclosing coupled com-

ponent perform the following steps [5]:

t

1 C sends an x-message with the input value

to S, which stores it in an internal variable

x∗ and sends back the time 1+ τ of its next

internal event.

1+ τ C sends a *-message to S, which now com-

putes its output value λ (s,e,x∗) and sends it

to C via a y-message. C distributes it via x-

messages to all connected components.

After that C sends an empty x-message to S,

which changes its state using δ (s,e,x∗) and

resets x∗ afterwards.

In the context of the example model the behaviour

is more complicated. We will concentrate only on the

switch with simulator S and assume that it is in state

s = 1 (out1 is active). At t = 1 the generator outputs a

value x = 1. Now the following happens (cf. Figure 2):

t

1 S gets (in,1) via an x-message, stores it in

x∗ and returns 1+ ε .

1+ ε S gets a *-message, computes output

{(out1,1),(out2,∅)} and sends it to C.

Then the delayed output of the comparator

arrives, therefore S doesn’t get an empty x-

message, but the input value (sw,1). x∗ now

contains both values, the next event will be

at 1+2ε .

1+2ε S gets a *-message, computes output

{(out1,∅),(out2,1)} and sends it to C.

Finally S gets an empty x-message, changes

its state to s = 2 and clears x∗.

This chain of events boils down to the following

behaviour: If a new input arrives during the waiting

time of a component, it will either complement the out-

put or overwrite it, and another delay time is added –

which again could be extended. Consequently, inter-

mediate outputs appear, only the final one representing

the expected results. This behaviour reminds of the λ -

iterations appearing in the RPDEVS simulator [6], but

the underlying mechanism is quite different, as we will

see in later examples.

Concentrating on the states the picture is simpler:

The state only changes at the end of such an event

chain and shows the anticipated behaviour. This be-

comes particularly clear, if one examines the termina-

tor blocks: Though the value 1 appears at both outputs

of the switch, it is only stored in the state of the (cor-

SNE 32(4) – 12/2022

198

Junglas et al. Implementing Standard Examples with NSA-DEVS

t

1
(d, 1+)

1+
(*,1+)

1+2

(d,)

SC

(x,(in,1),1)

(x,(sw,1),1+)
(d, 1+2)

(*,1+2)

(x, ,1+2)

(y,{(out1,1),(out2,)})

(y,{(out1,),(out2,1)})

Figure 2: Internal messages from or to the Switch simulator.

rect) lower terminator. The incoming value in the up-

per terminator is erased by the empty second output and

doesn’t reach the state variable. To make this happen,

it is important that the λ -function of an atomic compo-

nent explicitely outputs empty values at unused ports.

2.2 Practical implications

What this complex behaviour means for a practitioner,

who is not interested in the internal workings of the

simulator, depends on the output values that a concrete

simulator environment provides. In the PDEVS sim-

ulator hyPDEVS [9], a simulation run produces out-

put values representing the states of the atomic com-

ponents. In this case a similar NSA-DEVS simula-

tor would show exactly the expected behaviour of the

comparator-switch model.

The NSA-DEVS simulator that is described in [5]

has no intrinsic output possibilities. Instead it uses an

atomic component ToWorkspace that can be connected

to an output port and copies the incoming values to a

global output variable, which can be plotted or analysed

after the simulation run. Like all NSA-DEVS atomics

it has an internal delay τ . If one sets τ = rOutε for all

ToWorkspace blocks and chooses a value rOut that is

larger than the delays of all other atomics, the interme-

diate outputs do not show up in the global output vari-

ables and the behaviour is again as expected. Choosing

a very small value for rOut , one can make these outputs

visible, which could be useful for debugging purposes.

Another possible approach would be to set the delay

of the switch component to 2ε . Since the input from

the comparator now arrives, before the *-message of the

switch is called, no intermediate outputs are generated

and one can use arbitrary (especially: default) delays

for ToWorkspace blocks. Thinking along these lines,

one could take the appearance of intermediate outputs

as a hint to properly adapt some delays.

3 Flip-flops and Shift Register
As has been shown in [10], the modeling of simple dig-

ital circuits containing flip-flops can be a challenge for

discrete-event based systems. A solution for the case

of RPDEVS has been given in [11]. Using the example

of a simple shiftregister (cf. Figure 3), we will demon-

strate in the following that NSA-DEVS can cope with

such examples easily.

Figure 3: Example 2: Shiftregister with four JK flip-flops.

The basic component is the JK flip-flop, which has

three binary inputs (J,CLK,K), two outputs (Q,Q) and

four internal states, three of them to store incoming val-

ues, and one for the proper state of the flip-flop. When

the CLK input switches from 1 to 0 (a “clock tick”), the

state changes according to the following function:

f (j,k,q) = ((j∨q)∧ k̄)∨ (j∧ k∧ q̄),

where j,k are the input values and q is the previous

value of the internal state. Very important is the correct

behaviour, when the arrival of inputs coincides with a

clock tick: In this case the old (stored) values are used

to compute the next state, after that the new values are

stored internally. This is necessary to implement the

correct behaviour of a shift register, where incoming

values are shifted at a clock tick for one step along the

line of flip-flops.

SNE 32(4) – 12/2022

199

Junglas et al. Implementing Standard Examples with NSA-DEVS

These considerations lead to the following formal

definition of the JK flip-flop atomic model:

B := {0,1}
Pin = {J,CLK,K}, X = Pin ×B

Pout = {Q,Q}, Y = Pout ×B

S = B×B×B×B, where s ≡ (j,clk,k,q) ∈ S

ta(s) = ω
τ = rε (r parameter)

δ (s,e,x+) = (j′,clk′,k′,q′) with

q′ =

{
f (j,k,q) |clk = 1∧ (CLK,0) ∈ x+

q |otherwise

j′ =

{
b |(J,b) ∈ x+

j |otherwise

clk′ =

{
b |(CLK,b) ∈ x+

clk |otherwise

k′ =

{
b |(K,b) ∈ x+

k |otherwise

λ (s,e,x+) =

⎧⎪⎨
⎪⎩
{(Q, f (j,k,q),(Q, f (j,k,q))}

|clk = 1∧ (CLK,0) ∈ x+

∅ |otherwise

The complete example model is a coupled model

that contains two binary generators producing test in-

puts, a not gate, four JK flip-flops and two terminators.

The formal description of all these models is straighfor-

ward. Using the Matlab-based NSA-DEVS simulator

from [5] the complete model is easily implemented and

run.

Adopting the global default value for all input de-

lays, the simulation results are as expected, no twisting

of any parameters is necessary. This example shows

that the key to a valid implementation of flip-flops is a

precise definition of their behaviour – and that the NSA-

DEVS formalism offers the tools do this easily.

4 A Simple Queue-Server
System

The third example consists of a generator that creates

entities in fixed time intervals tG = 1 and sends them

to a queue, which is connected to a simple server with

fixed service time tS = 1.5. Entities leaving the server

are terminated (cf. Figure 4).

The queue outputs entities unless it is blocked; its

blocking status is given by an additional input coming

from the server. This model has already been used as

a case study in [4] and [5], it shows a complex be-

haviour due to its cascade of causally related concur-

rent events. The queue and server components have an

additional output for the number of stored entities (ynq
or yns, resp.), which will be used in the last example

model.

Figure 4: Example 3: Singleserver model combining a queue

and a server component

The formal mathematical definition of the compo-

nents is straightforward, but a bit cumbersome, espe-

cially for δ and λ . Therefore, their behaviour will be

described by an enhanced state diagram like in Figure 5

for the server. These “macroscopic” states are not iden-

tical to the NSA-DEVS states, i. e. elements of the set

S, which usually is much larger, but contain the essen-

tial information to conveniently describe the behaviour

of the component.

idle busy

ta = ta = tS

E / bl=1

/ E, bl=0

Figure 5: State diagram of the server component.

Nevertheless, it is a useful exercise to explicitely

write down most of the formal structure of a compo-

nent, to make its definition as precise as possible. For

the server component this could be done in the follow-

ing way (identifying an entity with a real number for

simplicity):

SNE 32(4) – 12/2022

200

Junglas et al. Implementing Standard Examples with NSA-DEVS

Pin = {in}, Xin = R ⇒ X = {in}×R

Pout = {out,ns,bl}, Yout = R,Yns = {0,1}= Ybl

⇒ Y = {out}×R∪{ (ns,0),(ns,1),(bl,0),(bl,1)})
S = {(∅,ω)}∪ (R× [0, tS])

ta((v,σ)) = σ
τ = rε (r parameter)

While most of this definition is straightforward, the

set of states needs some explanations: The state consists

of the value v of a stored entity (or ∅) and the current

lifetime σ of the state. This is a frequently used trick

and reduces the time advance function to simply return-

ing σ . It is necessary here to cope with a special situa-

tion: When an entity reaches the input, while the server

is busy, the entity is discarded, and the waiting time of

the currently stored entity has to be reduced. This can

easily be done by changing the value of σ . Note that the

“macroscopic” states idle and busy are only implicitely

given by

idle ≡ (v =∅)

busy ≡ (v ∈ R)

A crucial point in the definition of δ and λ is to take

all possible values of Q×X+ into account. A helpful

approach here is to divide these values into internal, ex-

ternal and confluent events – just as in PDEVS –, using

the values of the function arguments s, e and x+.

The definition of the queue can be done along these

lines using the state diagram in Figure 6. Four macro-

scopic states are defined according to the blocking sta-

tus and the size of the queue (empty or not). The critical

state here is queuing f ree, which is the only state, where

the queue outputs entities. It is a transitory state, which

in the context of NSA-DEVS becomes a state with an

infinitesimal delay rd ε . The value of rd is defined as a

parameter with the usual default value of 1; as we will

see, it plays a crucial role in the correct implementation

of the singleserver example.

If one runs the complete model on the Matlab-based

NSA-DEVS simulator, using default parameter values

for all input delays and rd , the result is incorrect: At

time t = 4 the queue sends the fourth entity to the server

instead of the third, which gets lost (cf. Figure 7). The

basic reason for this behaviour is evident: After sending

entity three, the queue stays in the state queuing f ree
and sends the next entity after a delay of ε , because the

ta = 0

empty
free

queuing
free

ta = inf

empty
blocked

queuing
blocked

ta = inf ta = inf

bl=1 /

bl=0 /

E /

(nq=1) / E

E /

bl=1 /

bl=0 /

E /

(nq>1) / E

E /

X

Figure 6: State diagram of the queue component.

blocking signal from the server has not arrived yet. In

order to guarantee the desired ordering of events, one

simply has to properly enlarge the value of rd to get the

expected simulation results.

0

5

10

ou
t

Generator

0 2 4 6 8 10
t

0

5

10

ou
t

Queue

0 2 4 6 8 10
t

0 2 4 6 8 10
t

0

1

2

3

4

nq

Queue

0

5

10

ou
t

Server

0 2 4 6 8 10
t

Figure 7: Simulation results of singleserver with default

parameters.

Simple considerations like these are usually suffi-

cient to cope with most problems coming from a wrong

ordering of concurrent events. But if one looks more

closely, there are still some fine points that are not im-

mediately obvious, such as: Why are the results shown

in Figure 7 so much different from the corresponding

results in [4, Fig. 6]? And why is a value of rd = 1.1
already large enough to produce correct results? One

can always use the debugging features of the simulator

to retrace its behaviour, which makes answering such

questions a straightforward, if tedious, exercise [12].

SNE 32(4) – 12/2022

201

Junglas et al. Implementing Standard Examples with NSA-DEVS

5 A Complex Queuing System

The final example is a simplified version of the basic

queuing system from the Argesim benchmark C22 [13].

It contains a generator and a set of three queue-server

lines. Incoming entities are routed to the shortest line

(including the server allocation) and leave the system

after being served (cf. Figure 8). The benchmark de-

fines two model variations according to the order of

concurrent events: In variant A an entity leaves a server,

before a new entity enters the system, in variant B the

order is reversed.

Figure 8: Example 4: Queuing system fifo3 containing three

queue-server lines.

The queue-server lines are defined as coupled mod-

els consisting of the queue and server components from

above and a simple atomic block that adds their loads.

An additional ToWorkspace block is added for logging

purposes (cf. Figure 9). According to the lesson learned

from the last example, all input delays are identical,

while the delay time of the transient queue state is twice

as large.

Figure 9: Internal structure of coupled model queueserver.

Three more atomic components are needed to com-

plete the example:

• a distributor that routes incoming entities to the

output that is defined by a control input,

• a combiner that accepts entities from its inputs and

sends them to its single output,

• a computational block (smallestin) that gets the

three loads, computes the minimal value and out-

puts the number of the smallest input where the

minimum occurs.

They all can be implemented easily, the only interesting

one is the combiner: When entities appear concurrently,

they will be stored internally and output one after the

other. The necessary transitory state as always induces

an (infinitesimal) delay between the outgoing entities.

If one uses a ToWorkspace block to display them, one

has to set its delay to a small value, since otherwise one

would only see the last outgoing entity.

Using only standard parameters for all delays, the

complete model works without further ado and pro-

duces the expected results (cf. Figure 10). Having a

close look at the order of the outgoing entities, one finds

that the model realizes the variant B: Due to the delays

of the adder and the smallestin block, the information

that a server is empty arrives at the distributor after the

new entity from the generator has passed. To implement

variant A, one simply increases the delay of the distrib-

utor either to an arbitrary large value or – after chasing

the delays through the diagram – to 3ε .

6 Conclusion
As the careful analysis of the examples has shown, the

expected large number of delay parameters needed in

NSA-DEVS usually boils down to one default value

and a bit of fine-tuning in special cases. The most no-

table exception was the queue, where the lifetime of the

transitory state has to be enlarged. But since a queue

component with a properly adapted default value will

usually be part of the model library, a user in practice

won’t come in touch with this exception.

Two simple provisions have been identified that of-

ten will help to hide the internal details: Firstly, if a

component with several output ports sends values only

to some of them, it should send an empty value to the re-

maining ports, in order to get rid of intermediate output

values. In a Matlab implementation this could be the

empty array []. Secondly, one should choose a large

input delay for the ToWorkspace blocks, which again

could be predefined already in the model library.

SNE 32(4) – 12/2022

202

Junglas et al. Implementing Standard Examples with NSA-DEVS

0

2

4

6

8

10

12

14

id

outgoing entities

0 5 10 15 20 25 0 5 10 15 20 25
0

0.5

1

1.5

2

n

queue lengths

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

n

queue+server loads

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

n

total queue length

Figure 10: Simulation results of fifo3 with default

parameters.

Of course there are situations, where one needs to

think about the infinitesimal behaviour, e. g. to define a

special ordering of concurrent events. Another example

occurs in the comparator-switch model, when a chain of

components before the comparator input leads to a large

total delay, which has to be compensated by the delay of

the switch. But such difficulties are basically inherent

to discrete-event modeling, and the question is not, how

to avoid them, but how to cope with them in a clear-

cut way. One could argue that NSA-DEVS provides the

right balance between hiding details in simple cases and

giving access to the internals to solve these problems.

An open question at the end of [5] was, whether one

delay time for an atomic model suffices, or if one needs

port specific delay times. So far, the simple definition

used in NSA-DEVS seems to work generally. If nec-

essary, a simple workaround would be, to add a spe-

cial delay component – basically a gain with factor 1

– before a port that needs a special delay. This ques-

tion could be further examined in the context of the fi-

nal remaining task from the todo list at the end of [4],

which was the implementation of a complex case study

in NSA-DEVS, and will be adressed in a future investi-

gation.

References

[1] Zeigler BP, Muzy A, Kofman E. Theory of Modeling
and Simulation. San Diego: Academic Press, 3rd ed.

2019.

[2] Goldstein R, Breslav S, Khan A. Informal DEVS

conventions motivated by practical considerations. In:

Proc. of Symposium on Theory of Modeling
&Simulation – DEVS Integrative M&S Symposium.

2013; pp. 10:1–10:6.

[3] Preyser FJ, Heinzl B, Kastner W. RPDEVS: Revising

the Parallel Discrete Event System Specification. In:

9th Vienna Int. Conf. Mathematical Modelling. Wien.

2018; pp. 242–247.

[4] Junglas P. NSA-DEVS: Combining Mealy Behaviour

and Causality. SNE Simulation Notes Europe. 2021;

31(2):73–80. doi: 10.11128/sne.31.tn.10564.

[5] Jammer D, Junglas P, Pawletta T, Pawletta S. A

Simulator for NSA-DEVS in Matlab. In: Proc. of ASIM
2022 – 26. Symposium Simulationstechnik. Wien. 2022;

pp. 93–100. doi: 10.11128/arep.20.a2005.

[6] Preyser FJ, Heinzl B, Kastner W. RPDEVS Abstract

Simulator. SNE Simulation Notes Europe. 2019;

29(2):79–84. doi: 10.11128/sne.29.tn.10473.

[7] Goldblatt R. Lectures on the Hyperreals. New York:

Springer. 1998.

[8] Preyser FJ, Heinzl B, Raich P, Kastner W. Towards

Extending the Parallel-DEVS Formalism to Improve

Component Modularity. In: Proc. of ASIM-Workshop
STS/GMMS. Lippstadt. 2016; pp. 83–89.

[9] Pawletta T, Deatcu C, Pawletta S, Hagendorf O,

Colquhoun G. DEVS-based modeling and simulation in

scientific and technical computing environments. In:

Proc. of DEVS Integrative M&S Symposium (DEVS’06)
- Part of the 2006 Spring Simulation Multiconference
(SpringSim’06). Huntsville/AL, USA: D. Hamilton.

2006; pp. 151–158.

[10] Junglas P. Pitfalls using discrete event blocks in

Simulink and Modelica. In: Proc. of ASIM-Workshop
STS/GMMS. Lippstadt. 2016; pp. 90–97.

[11] Fiedler C, Preyser FJ, Kastner W. Simulation of

RPDEVS Models of Logic Gates. SNE Simulation
Notes Europe. 2019;29(2):85–91. doi:

10.11128/sne.29.tn.10474.

[12] CEA Wismar. NSA-DEVS on GitHub.

https://github.com/cea-wismar/
NSA-DEVSforMATLAB.

[13] Junglas P, Pawletta T. Non-standard Queuing Policies:

Definition of ARGESIM Benchmark C22. SNE
Simulation Notes Europe. 2019;29(3):111–115. doi:

10.11128/sne.29.bn22.10481.

SNE 32(4) – 12/2022

