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Editorial  
Dear  Readers, This third issue of SNE Vol. 32, 2022 , sustains the traditions of SNE special issues for EUROSIM conferences – 
with this SNE Special Issue ASIM SPL 2021 – Simulation in Production and Logistics. ASIM, the German Simulation Society, is 
running two bi-annual conference series, the ‘ASIM Symposium Simulation Technique’, and the ‘ASIM Dedicated Conference on 
Simulation in Production and Logistics’. The Special Issue Editorial Board has selected seven outstanding contributions from 
ASIM SPL 2021 for publication in SNE, compiling a successful special issue as with SNE 30(4) – SNE Special Issue ASIM SPL 
2019 Conference, and SNE 27(2) – SNE Special Issue ASIM SPL ‘Impact of Energetic Factors’ – and hoping for the next SNE  
Special Issue ASIM SPL 2023 with contributions from the next conference in this series (September 2023, Ilmenau).  
This issue also continues another SNE tradition: as with SNE Vol. 30, 28, 25, 23, and Vol. 21, Vlatco eri , Past President of the 
Croatian Simulation Society, provides his artwork as cover pictures for SNE Vol. 32, 2022. ‘Algorithms, mathematics and art are 
interrelated in an art form called algorithmic art. Algorithmic art is visual art generated by algorithms that completely describe 
creation of images. This kind of art is strongly related with contemporary computer technology, and especially computer program-
ming, as well as with mathematics used in algorithms for image generation’ – as eri  defines (vceric.net). For this issue, we have 
chosen the Picture no.4 of the series AMULETS. Vlatko Ceric’s graphic art is based on algorithms, which step by step generate the 
graphic result – an analogon to the algorithms used in discrete simulation – the basis for the work presented in this special issue. 

We thank the special issue editors for their excellent editorial work (for details, see the special issue editorial). I would like to 
thank all authors for their contributions to SNE 32(3) showing the development of (mainly) discrete simulation and application in 
production and logistics. And last but not least thanks to the SNE Editorial Office for layout, typesetting, preparations for printing, 
electronic publishing, and much more. 

Felix Breitenecker, SNE Editor-in-Chief, eic@sne-journal.org; felix.breitenecker@tuwien.ac.at 
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SNE 32(3), the SNE Special Issue ASIM SPL 2021, com-
prises a selection of outstanding contributions of the 19th 
ASIM Dedicated Conference Simulation in Production 
and Logistics (ASIM SPL 2021), which took place in Sep-
tember 2021 as an online-Conference, organized by FAU 
Erlangen-Nürnberg and TH Ingolstadt. 

Every two years, this conference – as Europe’s largest 
conference on simulation in production and logistics – is or-
ganized by the ASIM Section Simulation in Production and 
Logistics (SPL) and presents trends, research results, devel-
opments, and significant industrial applications. The confer-
ence in the year 2021 focuses compelling topics like energy 
and sustainability, data science and artificial intelligence, 
applications in factory control and logistics as well as veri-
fication and validation.  

The consideration of energy aspects in the simulation 
of manufacturing systems stands in the context of opera-
tional efforts for carbon-neutral production and sustaina-
bility. Schreiber et al. introduce a simulation-based opti-
mization approach for eco-efficient orchestration of a 
supply chain with an objective system consisting of three 
sub-objectives: cost, energy efficiency and service level. 
By coupling the simulation model with a Non-dominated 
Sorting Genetic Algorithm, new configurations of deci-
sion variables are generated after a series of simulation 
runs. Ventura Silva et al. describe a simulation-based 
methodology for evaluating indirect and direct energy 
demand and costs associated with production scrap. 
Based on a combined discrete-event and agent-based 
simulation, scenarios with different rates are simulated. 
The results show that the impacts associated with produc-
tion scrap are different for each process and are influ-
enced by various factors. 

Rippel et al. design a possible optimization of the supply 
to install offshore wind farms. The idea is to combine math-
ematical optimizations with a cascading discrete-event sim-
ulation to select online from a previously optimized cycle 
during project execution. This combination brings together 
the best of both methods by optimizing each route separately 
through high flexibility while reducing the search space. 

In the context of Artificial Intelligence (AI), the method 
of knowledge discovery uses simulation data or simulation 
models as data generators (data farming). Genath et al. pre-
sent an integrated solution that enables the creation of ex-
perimental plans, implements a method for distributing the 
required experimental runs, and empowers the user with 
tools for analyzing and visualizing the result data. 

 

Studies on logistics concepts and the design and control 
of handling technology and conveyor systems are a tradi-
tional application field of simulation, which still contains 
many interesting innovations. Voss et al. present a combina-
tion of analytical approach and simulation to solve the prob-
lem of combined container stowage and ship routing. The 
newly developed mathematical model is used to calculate 
the optimal stowage plan while optimizing the terminal ro-
tation. The optimal solution is tested for robustness using 
simulations. There are various approaches to parcel deliv-
ery. Davidsson et al. have evaluated a novel transportation 
solution in which electric vehicles dynamically deploy 
smart freight boxes from which customers can pick up 
their delivery at any time of day. This gives customers 
more flexible access to their parcels and allows the ser-
vice provider to deliver parcels more efficiently. 

Some contributions of the conference have addressed the 
topics of verification and validation. Overbeck et al. show a 
potential way to extend the useful and usable time slot for 
simulation models. This is to introduce a method for auto-
matically comparing simulation models with actual produc-
tion systems and then allowing the model to self-adapt to 
reality to maintain and even improve its accuracy over time. 
An improved simulation model can be defined as a digital 
twin of the production system. 

The editors express their gratitude to all authors for their 
great effort and cooperation. For this SNE issue, they have 
revised and in some cases expanded their original confer-
ence contributions, thus providing interesting insights into 
current considerations and the spectrum of scientific discus-
sion. Furthermore, the editors would like to thank the re-
viewers for their substantial and precious support towards a 
special issue of high scientific quality. Last but not least the 
editors thank the SNE Editorial Office for the support in 
compiling this special issue and for the opportunity to make 
the issue an ‘early’ SNE September issue, ready for the 
ASIM 2022 Conference in Vienna, July 2022.  

The editors hope that you will enjoy this SNE issue, that 
it contains valuable suggestions and that it will encourage 
you to participate actively in the next ASIM SPL conference, 
which will take place in Ilmenau, Sept. 13 - 15, 2023. 
www.asim-fachtagung-spl.de 
 

Sincerely, the SNE 32(3) Special Issue Editors 
 

Jörg Franke, FAU Erlangen-Nürnberg, 
Eva Russwurm, FAU Erlangen-Nürnberg;  
Peter Schuderer, TH Ingolstadt, 
Sigrid Wenzel, Universität Kassel 
             in the name of the ASIM Dedicated Conference  

Editorial SNE 32(3)  –  SNE Special Issue ASIM SPL 2021 
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Abstract.  Simulation is an established methodology for 
planning and evaluating manufacturing and logistics sys-
tems. In contrast to classical simulation studies, the 
method of knowledge discovery in simulation data uses a 
simulation model as a data generator (data farming). Sub-
sequently, hidden, previously unknown and potentially 
useful cause-effect relationships can be uncovered on the 
generated data using data mining and visual analytics 
methods. So far, however, there was a lack of integrated, 
easy-to-use software solutions for the application of the 
data farming in operational practice. This paper presents 
such an integrated solution, which allows generating ex-
periment designs, implements a method to distribute the 
necessary experiment runs, and provides the user with 
tools to analyze and visualize the result data. 

Introduction 

Simulation is an established tool for planning and con-
trolling complex production and logistics systems and 
has proven to be an important key component, among 
other things, in solving challenges in the context of In-
dustry 4.0 [8]. Traditional simulation studies are usually 
designed to cover a previously defined project scope or 
to achieve a concrete project goal through manual exper-
imentation. This includes, for example, the optimisation 
of a production layout [9]. 
 

With increasing computing power and the general 
availability of Big Data infrastructures and cloud-based 
solutions, as well as considerable progress in the field of 
data mining, another possible application for simulation 
models arises: conducting a very wide range of experi-
ments to uncover hidden, previously unknown and poten-
tially useful cause-effect relationships. Particularly in 
complex systems, there may be relationships, problems 
or even solutions that go beyond the defined goal of a 
traditional simulation project and can therefore contrib-
ute to decision support. The basis for this approach is the 
methodology of data farming [5]. 

Based on data farming, Feldkamp et al. [4] developed 
a method named Knowledge Discovery in Simulation 
Data, which supplements data farming with methods 
from data mining and visual analytics, specifically suited 
for the analysis of production and logistic systems. Initial 
case studies have proven its potential [1, 2].  

However, a broad transfer into operational practice 
was so far held back due to the lack of an integrated soft-
ware solution that also enables non-simulation or data 
farming experts to conduct knowledge discovery in sim-
ulation projects. 

This paper presents such an integrated solution, 
which initially extends the existing software solution  
SimAssist (cf. [13]) as a prototype. The development was 
carried out within the framework of the German Federal 
Ministry of Education and Research (FMER) project 
"Development of an integrated solution for data farming 
and knowledge discovery in simulation data (DaWiS)". 
The sub-aspects to be considered here are procedures of 
intelligent experiment design, methods for the (cloud-
based) distribution of experiments as well as the selection 

 SNE 32(3), 2022, 121-126,  DOI: 10.11128/sne.32.tn.10611 
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and adaptation of suitable data mining and visual analyt-
ics methods, so that data farming or the method of 
knowledge discovery in simulation models according to 
Feldkamp [1] can be effectively applied with little train-
ing effort.  

In this paper, the methods and the implemented soft-
ware solution are explained using an example from the 
automotive industry. The actual simulation is carried out 
in the simulation software Siemens Plant Simulation. 

The remainder of the paper is structured as follows. 
First, the state of research and the necessary theoretical 
foundations of data farming and the method for 
knowledge discovery in simulation data (KDS) are pre-
sented briefly. Then, in Section 2 the main part of the pa-
per, the integrated method is presented step by step, and 
illustrated by a workflow example. At selected points, 
particular attention is paid to the technical implementa-
tion. The article ends with a conclusion and an outlook 
on possible extensions of the integrated solution. 

1 State of the Art 
In data farming, a previously validated simulation model 
is used as a data generator to cover the largest possible 
spectrum of model or system behaviour (response sur-
face) with the help of intelligent experiment design and 
high-performance computing [5, 10]. The "farming" met-
aphor expresses that the goal is to maximise the data yield 
of the simulation model, analogous to a farmer who cul-
tivates his land as efficiently as possible to maximise his 
crop yield [11].  

The research and development of improved proce-
dures for the design of simulation experiment plans is one 
of the crucial prerequisites. These allow possible combi-
nations of factor values to be comprehensively repre-
sented and at the same time guarantee a reasonable num-
ber of experiment runs to generate data [7, 12]. Espe-
cially in the context of the simulation of production and 
logistics systems, the selection of one of the design meth-
ods or even the selection of a suitable combination of dif-
ferent design methods is of great importance. To carry 
out the experiments, the data farming literature often re-
fers to appropriate high-performance computing [5]. 

Interesting relationships can then be uncovered in the 
generated data with the help of various data mining or 
visual analytics methods [6]. This way, previously un-
known relationships, problems or even solutions can pos-
sibly be identified.  

Feldkamp [1] presents a selection of possible data 
mining methods, e.g., clustering, and the appriopate 
workflow for applying those methods contiguously. It is 
recommended that the actual analysis of the generated 
simulation result data and the relationships between fac-
tors and result data (key figures) is ideally supported with 
interactive, visual analysis. Visualisation is generally a 
crucial tool when an interpretation of data is required. A 
consistent dovetailing, as is generally recommended in 
the research discipline of visual analytics, between inter-
active visualisation, e.g., by means of interactively adapt-
able animations, time series diagrams, graphs, and data 
analysis by means of data mining methods, enables the 
user to incorporate the human ability to draw conclusions 
in the best possible way [3, 6]. 

In summary, the state of the art in science and tech-
nology in this context shows that the basic individual 
methods (data farming, intelligent experiment design, 
data mining and visual analytics) have reached a suffi-
cient maturity level. Prototypical applications in the con-
text of simulating production and logistics systems 
demonstrating the potential of this approach have also 
been published. However, it must be stated that there is 
yet no holistic solution for transferring the methods as a 
whole or at least in significant parts into a framework that 
can be operated by non-experts, and which also focuses 
on the area of simulation in production and logistics. Fur-
thermore, there is a lack of methods for (partial) automa-
tion of the processes and for supporting non-experts in 
general. 

2 Integrated Solution for Data 
Farming and Knowledge 
Discovery in Simulation Data 

As already mentioned in the introduction, the aim of the 
FMER research project DaWiS is to develop a software 
solution, supplemented by best practice procedures, 
which also allows non-experts to acquire knowledge 
based on data farming using data mining and visual ana-
lytics methods.  

For this purpose, the proven modular software  
SimAssist (cf. [13]) by Simplan AG, which already pro-
vides extensive assistance functions for the administra-
tion, analysis, visualisation, and documentation of result 
data of classic simulation projects, has been expanded.  
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The extensions are combined in a new module of the 

software call “4farm”. Corresponding components were 
designed and prototypically implemented for the already 
mentioned sub-aspects, the intelligent experiment design, 
the distribution of experiments as well as for the data 
mining and visual analytics. The basic architecture of the 
module can be seen in Figure 1.  

It is worth mentioning that in addition to research on 
the methodology, substantial effort was put into the de-
sign of the user interactions during the conception and 
development, so that all necessary sub-aspects (from ex-
periment design to the distribution of experiment runs to 
the analysis and visualisation of data) are available via an 
integrated interface without changing the software. 

 

Figure 1: General architecture of the software solution 
(SimAssist – 4farm module) for data farming  
and knowledge discovery in simulation data. 

Furthermore, as many technical details as possible are 
hidden from the end user, especially regarding the exper-
iment design, the data mining and visual analytics meth-
ods, necessary settings are anticipated based on best prac-
tices. If this is not possible, the necessary settings are 
transferred to an intuitively understandable technical ap-
plication level. This is done by asking for the necessary 
parameters when using the methods. In each case, the 
user is offered lists with selection options.  
The corresponding notes on the use as well as the ad-
vantages and disadvantages of the individual variants are 
stored in the software in the form of information texts or 
decision trees or in a similar way. The user can thus focus 
completely on the simulation model and objective of the 
simulation study. 

Due to the rapid development of research in the field 
of data mining and visual analytics, but also due to the 
large number of possibilities regarding experiment de-
sign, another requirement placed on the software is that 
new methods, including visualisations, can easily be 
added in the future via a standardised mechanism. 

2.1 Workflow Example – Supplying a Car 
Production Line with Batteries 

In the context of this paper, selected methods as well as 
the implemented software solution - especially the ex-
cerpts of the user interfaces - are presented based on an 
example scenario. Among other use cases, this example 
was used in the DaWiS project starting with the require-
ments analysis until the final demonstration of the meth-
ods and the software. 

The workflow example includes a typical logistical 
problem in which the supply of a running car production 
with two different types of batteries as well as the dis-
posal of the stackable empty load carriers is considered. 
The delivery of the batteries in load carriers and the col-
lection of the empty load carriers is done by truck at an 
unloading dock. The actual handling of the batteries is 
done by forklift trucks (Figure 2). 

 

Figure 2: Screenshot of the model of a loading/unloading 
of batteries to supply a running production. 

 
The variable input parameters (factors) of the model in-
clude the ratio of battery types A and B in the total pro-
duction programme of the vehicle assembly (which itself 
is not part of the simulation model under consideration). 
Further factors of the simulation model are the total pro-
duction volume, the cycles in which trucks deliver new 
batteries and the size of the buffers for full loads. In ad-
dition, three different scenarios are defined, each of 
which differs in the forklift variants used (5t or 8t fork-
lifts) and the number of forklifts (1-2 forklifts). To ana-
lyse the results, 31 result parameters are stored, including 
the forklift utilisation or the downtimes of the connected 
assembly due to missing batteries. 

The model of the production and logistics system was 
created using the Siemens Plant Simulation software. 
Here, modules were developed which enable the setting 
of the factor values (variables to manipulate) and the 
readout of the pre-definable result data (XML format). 
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With the help of these modules, models can be en-

riched with meta-information about the factors and result 
parameters as well as their data types and, if applicable, 
existing value ranges. This information can be evaluated 
by the integrated solution and presented to the user and 
used as a basis for the concrete experiment design. 

2.2 Experiment Design 

As described earlier, generating suitable experiment de-
signs is the first major challenge in the process of data 
farming and thus also in the method for knowledge dis-
covery in simulation data that builds on it. Currently, five 
different experiment design methods have been selected 
and implemented: the full factorial design, the 2 -design, 
the central composite design, and the Latin Hypercube 
Sampling (LHS) as well as a design in which an LHS can 
be crossed with another factor or design.  

It should be noted that experiment design methods 
sometimes require method-specific parameters in addi-
tion to the parameters describing the factors, i.e., the 
names of the factors, the data type and value range of the 
factor. For example, in case of the LHS, the number of 
experiments must be specified. All design methods are 
implemented as Python scripts. The scripts use a uniform 
library for XML-based data import and export and can 
contain corresponding meta-information as comments at 
the beginning.  

The information about the factors can be set manually 
or – as indicated in the previous section – read out from 
the simulation model. The design method-specific pa-
rameters are queried from the user in SimAssist. Which 
parameters are queried and how the interface is designed 
in the SimAssist 4farm module is defined in the meta in-
formation of the respective script. 

Adding further experiment design methods is possi-
ble at any time without restarting the software. To do this, 
the methods only must be made known as Python scripts 
annotated with the addressed meta information by copy-
ing them into a defined directory (so-called hot deploy-
ment). The corresponding selection option and the inter-
faces are generated ad hoc and can be used immediately.  

When selecting the experiment design methods, the 
user is supported on the one hand by textual help for the 
individual methods. On the other hand, assistance is 
available in the form of a decision tree (Figure 3), in 
which a design method is suggested by answering simple 
questions.  

 

In the example scenario mentioned here, a crossed 
LHS design with 15,000 experiments (5000 LHS * 3 sce-
narios) was used due to the different scenarios 
(green/dashed path in Figure 3). 

 

Figure 3: Flowchart for selecting the appropriate  
experiment design methods [1]. 

2.3 Experiment Distribution 
Due to the large number of simulation runs, it is usually 
not practical to carry out the experiments on a single 
computing instance (single computer or single processor 
core on a single computer). Instead, it is desirable to dis-
tribute individual experiments across different compu-
ting instances. The technology used in the DaWiS project 
is based on a software component from a preliminary 
project of Simplan AG, the so-called SimController. This 
was adapted in such a way that it is now possible to dis-
tribute experiments, i.e., models and the concrete factor 
values in the form of XML data via a central instance to 
self-registering client instances using TCP/IP. The indi-
vidual instances continuously report their status.  

After running an experiment, the defined characteris-
tic values (and used factor values) are reported back to 
the central instance and stored in SimAssist in the form 
of a SQLite database. This data can then be used and an-
alysed very easily.  

2.4 Analysis of the Result Data – Data 
Mining and Visual Analytics 

Analogous to the experiment design methods, the num-
ber of possible data mining methods and visualisation 
methods is very large. In the method for knowledge dis-
covery in simulation data, Feldkamp [1] analyses differ-
ent groups of methods and provides an assessment them 
with regards to their benefit for knowledge discovery.  
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Based on this research, methods of descriptive statis-

tics, correlation analysis, clustering (k-means and gauss-
ian mixture) as well as regression analysis and the for-
mation of classification trees were classified as most val-
uable for practical application and implemented in the 
prototype. In addition, there are suitable visualisations 
such as heat maps for correlation analysis or parallel co-
ordinate and scatter diagrams for the evaluation of clus-
tered data. The technical implementation here is analo-
gous to the implementation of the experiment design 
methods, i.e., each of the methods is implemented as an 
annotated Python script and the data exchange with the 
script is again carried out via XML format. Here, too, it 
is thus easy to implement further data mining methods 
and visualisations, which are immediately available to 
the user via generic dialogues from the 4farm module for 
knowledge discovery.  

The data analyses within the workflow example have 
not yet been completed. However, initial findings are 
emerging. For example, it turns out that assuming the 
current demand for batteries, every scenario leads to a se-
cure supply of production. However, even with a moder-
ately increasing proportion of battery electric vehicles, 
scenarios with two forklifts, at least one of which is an 8t 
forklift, work better, especially if one battery type is in 
demand significantly more often. 

3 Conclusion 
The paper presented an integrated software solution de-
veloped for knowledge discovery in simulation data. For 
this purpose, the need for and the requirements of such a 
solution were derived and the essential sub-aspects of the 
method and its user-friendly prototypical implementation 
were examined in more detail. Further development steps 
include the implementation of additional experiment de-
sign and data mining methods as well as additional visu-
alisations. Moreover, further tests in real-world use cases 
are necessary, especially to validate the implemented in-
terfaces and file formats. Finally, research on further 
(partial) automation of the data mining methods, e.g., by 
means of meta-learning to determine suitable hyperpa-
rameters, or the use of methods for robustness analysis, 
is conceivable. 
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Abstract.  The efficient design of supply chains incorpo-
rating ecological objectives is a strategic task that is in-
creasingly attracting the attention of companies. This pa-
per introduces a simulation-based optimization approach 
to eco-efficiently orchestrate a supply chain with a target 
system consisting of three sub-targets: Costs, energy-effi-
ciency and service level. Regarding a use case from the 
steel processing industry, an event-discrete simulation 
model of the corresponding supply chain was configur-
ated. By interfacing the simulation model with a Nondom-
inated Sorting Genetic Algorithm new configurations of 
decision variables are generated after a set of simulation 
runs. The evaluation of the experiments and the resulting 
pareto sets led to the identification of promising eco-effi-
cient configurations and the derivation of corresponding 
decision variable assignments for the use case which con-
sist of material allocation, reorder point and replenish-
ment level. 

Introduction 
Rising global demand for energy as well as raw materials 
pose a major challenge for the manufacturing industry. 
Due to the scarcity of fossil fuels, sustainability in the in-
dustrial sector is becoming increasingly important. Nev-
ertheless, according to the German Federal Ministry of 
Economic Affairs and Energy, the energy consumption 
in this sector increases significantly [1]. Efforts at the in-
terface between research and application are necessary to 
enable companies to counter these contradictory devel-
opments. 

In the context of supply chain management, ecologi-
cal goals are increasingly being integrated into corporate 
decisions. Eco-efficient approaches represent a decisive 
strategy for the design of sustainable supply chains [2]. 
In this context, ecological goals have to be integrated into 
the target system of the value network, and, at the same 
time, economic efficiency has to be maintained or in-
creased. However, supply chains are highly dynamic and 
complex systems with multiple dynamic interdependen-
cies. Accordingly, efficient methodological tools are 
needed that can map and evaluate supply chain interde-
pendencies and achieve improvement in supply chain pa-
rameter configurations. The event-discrete material flow 
simulation is an established tool to digitally replicate and 
evaluate different control logics and parameter settings 
of individual entities. Linear optimization models as well 
as metaheuristics are, among other, suitable for the opti-
mization of value chains [3]. Due to the complexity de-
scribed above and the associated large solution space of 
possible design options for a value chain, it is difficult to 
generate exact solutions for a given modelled problem. 
Furthermore, a purely mathematical formulation of the 
model is often challenging due to the large number of ob-
jects, dependencies and stochastic uncertainties associ-
ated with these problems. 

Combining both metaheuristics and simulation uti-
lizes the advantages of both tools [4]. According to the 
VDI, this so-called simulation-based optimization can be 
implemented in four different ways [5]. In this paper, an 
integrative coupling shall be implemented to guide in the 
decision-making process. The (multi-criteria) simulation 
results serve as an objective function for a genetic algo-
rithm. According to the VDI, this corresponds to a “Cat-
egory D” approach. The three-dimensional target value 
system consists of costs, energy consumption and service 
level.  
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A genetic algorithm is used to create new configura-

tions of supply chain input parameters for the simulation 
model after a series of simulation runs. For this paper, the 
genetic algorithms used are the „Nondominated Sorting 
Genetic Algorithms (NSGA)” NSGA-II and NSGA-III.  

Through an implemented interface, newly generated 
configurations are automated and iteratively tested in 
subsequent simulation runs. Based on the state of the art 
and to differentiate the approach from previous papers, a 
specific demonstrative application from the steel pro-
cessing industry is presented. Based on a sensitivity anal-
ysis to narrow the search space to initially preclude defi-
cit solutions, the developed methodology is experimen-
tally tested and the results are evaluated. 

1 Simulation-based Optimiza-
tion for Supply Chains 

The use of simulation-based optimization for the orches-
tration and configuration of supply chains is a broad field 
of research. This chapter is dedicated to the consideration 
of current solution approaches of simulation-based opti-
mization, especially for the strategic and tactical design 
of processes in value networks. 

A methodology for a simulation-based optimization 
with an NSGA-II algorithm of the supply chain of a steel 
trading company was presented by Rabe et al. in which 
user-defined action plans, which address inventory pa-
rameters and material reallocations, can be designed [6]. 
The target system includes both cost and service-level, but 
does not integrate environmental metrics. Furthermore, be-
sides the NSGA-II algorithm a Deep Reinforcement 
Learning (DRL) approach is used instead of NSGA-III.  

Another “Category D” approach by Benyoucef and 
Xie focusses on a use case in the automotive industry, in 
which a two-dimensional target system consisting of cost 
and service level was also considered. Here, the solution 
space was restricted by limiting configurable parameters 
such as the order quantity and the reorder point with up-
per and lower limits in the potential occupancy [7].  

Other approaches exist that incorporate emission val-
ues in two-dimensional target systems [8] or elaborations 
that implement other metaheuristics, such as a Particle 
Swarm Optimization (PSO) [9]. 

An up-to-date and detailed review of the current re-
search of simulation-based optimization for value net-
works can be found in the paper by Tordecilla et al. [10]. 

 

From this, it is particularly clear that the target size 
system of the use case considered in this paper, with its 
three dimensions of cost, service level and energy effi-
ciency, represents a differentiation from previous works.  

2 Use Case Description 
The use case for this paper is a supply chain of a steel 
processing service provider with several distribution and 
processing centers. The service provider offers services 
in which standard sizes of steel products are transformed 
to customer-specific dimensions and shapes by various 
processing machines. For this purpose, a pool of pro-
cessing machines is available at various locations. The 
supply chain consists of five distribution centers and 25 
customer regions. A simplified form is shown in Figure 
1. 

   
Figure 1: Representation of the supply chain of the  

service provider. 

2.1 Procurement, Production and 
Distribution in the Use Case 

In the following the basic processes of procurement, pro-
duction, and distribution within the supply chain of the 
service provider are shown, which are integrated into the 
mechanisms of the simulation model. 

Incoming customer orders are first divided into order 
lines. Based on the stock levels in the distribution centers, 
these are checked to determine whether the order can be 
accepted. Due to individual material allocations, scenar-
ios may exist in which not all standard sizes are stocked 
in all distribution centers. In the case that several distri-
bution centers store the material of an order in sufficient 
quantity, a distance-based allocation is made so that the 
distribution center accepts the order that is geograph-
ically nearest to the customer region of the ordering cus-
tomer. If there is not enough material in the supply chain, 
the order is rejected. This must be considered accordingly 
in the service level.  
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The monitoring of the distribution centers’ stock lev-

els is thus an integral part. The service provider operates 
with an order point stock  level strategy, called ( , )-
order policy [11]. If, within the scope of this ordering pol-
icy, a stock level falls below a defined reorder level , the 
service provider triggers a purchase order with the sup-
plier, which replenishes new standard sizes to a maxi-
mum target stock level , defined individually for each 
product. 

The production process represents the customized 
processing of existing standard sizes or residual sizes 
from previous machining processes. A distinction is 
made between the sawing of profiles and beams and the 
cutting of sheets (seen in Figure 2). The times of the re-
spective sawing and cutting processes depend on the 
cross-section of the material to be cut as well as the saw-
ing or cutting speed of the machine. In addition, the feed-
ing rates as well as loading and unloading times of the 
machines are included in the total processing time. Each 
distribution center has an individual pool of machines 
with different attributes regarding processing speed, ca-
pabilities for processing specific materials and energy 
consumption. 

 
Figure 2: Example processing operations of the  

service provider. 

On the distribution side, order picking and loading is 
based on the weight and volume of the finished products 
and the maximum quantity and volume capacity of the 
transport trucks. They depend on the customer’s desired 
deadline, as well as route minimization. In addition to the 
company’s own trucks, there is also the option of calling 
a shipping agent. 

2.2 Target System of the Use Case 
An important aspect is the ability to quantify the individ-
ual components of the target system consisting of cost, 
energy consumption and service level. 

 
Costs.  As the first objective function of the target sys-
tem, the total costs are calculated, which consist of the 
sum of the transport costs, the order costs, the inventory 
costs, and the backorder costs.  

 
The objective function thus results in: = + + +  (1) 

where: 
•  :  transport costs [in €] 
•  :  order costs [in €] 
•  : inventory costs [in €] 
•  :  backorder costs [in €] 

 
The cost positions transport costs and order costs are also 
divided into a fixed and a variable portion. Fixed 
transport costs are incurred once for a transport. A dis-
tinction is made between the fixed costs for a forwarding 
agent and the fixed costs for transporting a company 
truck. This applies analogously to the variable transport 
costs. A different cost rate is used for the shipping agent 
compared to the company’s own trucks. Variable costs 
are calculated on an hourly basis depending on the dura-
tion of a tour. This stems from the total distance of the 
tour divided by the average speed of a truck.  

Ordering costs are always incurred if a stock level 
falls below a predefined reorder level and an order for the 
respective material is then placed with the supplier.  

The variable order costs of an order result from the 
multiplication of the order quantity with a variable order 
cost rate. In addition, a fixed cost rate is added for each 
purchase order. Inventory costs are always variable costs. 

For each storage unit, the individual storage period is 
the basis for calculating the inventory costs. This is mul-
tiplied by the daily inventory cost rate to determine the 
inventory costs. Finally, the shortage costs result from 
multiplying the number of the order lines, which couldn’t 
be fulfilled, by the corresponding backorder cost rate. 
The total costs are to be minimized in this optimization 
problem. 

 
Energy Consumption.  The second objective is to 
minimize the energy consumption of the sawing and cut-
ting machines (measured in megajoules [MJ]). The pro-
cessing times, feed rates and technical conditions of the 
individual machines play an essential role in the calcula-
tion. To determine the energetic power consumption of a 
saw, it is assumed that energy is only consumed by a saw 
when a workpiece is in its feed or the saw is busy ma-
chining a workpiece. For the machines, the drive powers 
of these two actuators are in the unit kilowatt [kW]. 
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Based on the process times for the feed as well as the 
machining of an order position and the drive powers of 
both actuators of a specific saw, it is possible to deter-
mine how many kilowatts are consumed for the machin-
ing of the respective order.  

By multiplying the respective machining times, the 
energy consumption can thus be determined in kilowatt 
hours. For the machining of a product of an order line, 
the following formulation is used to calculate the energy 
consumption: = 3600 × + 3600 ×  (2) 

where: 
•  :  power consumption of a saw from the 

  processing of an order line [in kWh] 
•  : total sawing time of an order line [in s] 
•  :  time for the feed of all workpieces of 

  an order line through the sawing  
  machine [in s] 

•  :  drive power of the actuator for control-
  ing the feed of the workpieces [in kW] 

•  :  drive power of the actuator for the  
  sawing process [in kW] 

 
By multiplying with the factor 3.6 MJ/kWh, the kilowatt 
hour is converted into megajoules. Since an order is di-
vided into individual order lines and these may be pro-
cessed in different distribution centers, the sum of the 
power consumed by positions ( = 1, …  ) must be used 
to determine the energy consumption for an order: 

= × 3,6  (3) 

 
Service-Level. The third dimension of the target sys-
tem is the degree of service-level and the delivery readi-
ness achieved, respectively. This is a logistical indicator 
that provides information on the average delivery capa-
bility of a company within a given period. In principle, 
there are various calculation bases for calculating the de-
gree of readiness to deliver. In the context of the use case, 
the so-called -Service-Level is sued to quantify the de-
livery capability. From a practical stand point, this is used 
as the preferred performance criterion because the amount 
of a shortfall is included in the calculation basis [11]. 
 

 
Mathematically, this is defined as follows: 

=       (4) 

The calculation of the -Service-Level implies that the 
best performance is achieved with a value of = 1, since 
in this case any period demand could be met. In terms of 
optimization, the value is to be maximized accordingly. 
Since the other two objective functions are to be mini-
mized and a combination of minimization and maximiza-
tion is more difficult to realize with multicriteria me-
taheuristics, the counter probability of the degree of read-
iness to deliver is minimized. Mathematically, the third 
objective function thus results in: = 1  (5) 

3 Decision Variables and 
Solution Space 

As described in the previous chapter, the company’s tar-
get system consists of the three components cost, energy 
consumption and service level. To optimize this mul-
ticriteria target system, variations of logistic parameters 
are investigated, which represent the decision variables 
of the system. The parameters to be studied are the reor-
der point   per product  in distribution center , the tar-
get stock  per product  in distribution center , and the 
allocation of products to specific distribution centers in 
the form of material reallocation strategies: 

•  :  target stock for product  in distribution 
 center  in days   

•  : reorder point for product  in distribution 
 center  in days   

•  :  binary material allocation for product  in 
 distribution center  [0,1] 

To address the initially shown problem of the large solu-
tion space, a sensitivity analysis of the supply chain to 
different inventory parameters was performed before 
coupling the simulation with the metaheuristic in order to 
limit the search space to promising possible combinations 
of reorder points and target inventories. This analysis tech-
nique is used to determine the sensitivity of the target func-
tions as a function of the input parameters [12].  
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For this purpose, the average demand quantities per 

product were converted into inventory ranges and all po-
tential combination possibilities up to a defined upper 
limit were evaluated iteratively in automatically trig-
gered simulation runs. For this, all combination possibil-
ities were equally distributed among the distribution cen-
ters. Figure 3 shows the total costs of the network de-
pending on the parameter settings.  

 
Figure 3: Sensitivity analysis of the total cost of the  

network as a function of the inventory  
parameters. 

The cost function takes a convex form, at least for the 
parameters tested. This is a good implication that the lo-
cal minimum found is also a global minimum. 

To achieve a better interpretation of the results re-
garding the costs achieved, the subsumed total costs are 
also broken down in Figure 3. This shows that the most 
significant differences occur in the shortage costs and the 
inventory costs.  

This finding can be attributed to a classic trade-off ef-
fect in inventory management, in which high inventories 
lead to high capital commitment costs, whereas low in-
ventories lead to shortage costs. With low reorder and 
target stocks, the risk of incurring a high sum of shortage 
costs is therefore higher. By contrast, minimizing this 
risk leads to high inventory costs. 

These sensitivity analyses were also conducted for the 
target variables energy consumption and service level. 
These analyses showed that the service level settles at a 
value close to 100% even at quite low ranges, which is 
associated with low shortfall costs. The quality of the val-
ues for energy consumption correlates strongly with the 
service level. This effect can be explained by the fact that 
for the sensitivity analysis, only the first tow decision 
variables were rudimentarily examined for the time being 
and no material reallocations are integrated. Accord-
ingly, products can only be processed, and energy con-
sumed if products are available in stock. Through this 
sensitivity analysis of the first two decision variables, a 
corresponding metaheuristic search space for the inven-
tory parameters could already be defined, which limits 
deficient solution candidates.  

The variation of the material allocation to the distri-
bution centers is now to be investigated in more detail, as 
it is suspected to be a major lever for minimizing the en-
ergy consumption. To reduce the computational calcula-
tion time a logical correlation was applied to the material 
reallocation. To investigate different assignments of 
product and distribution center, a percentage of material 
reallocations to be performed can be defined before the 
start of an optimization run. In the initial population and 
with each mutation of the genetic algorithm, a material is 
randomly reallocated to on ore more distribution centers 
according to this ratio. 

4 Description of Methodology 
and Tools 

Following the definition of the decision variables and the 
objective function, the methodological configuration 
must be designed. Two so-called “Nondominated Sorting 
Genetic Algorithms” (NSGA-II [13] and NSGA-III [14]) 
are used as metaheuristics in different experiments, 
which are based on the principle of genetic algorithms. 
According to them, the core building blocks are selection, 
recombination, and mutation.  
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In contrast to classical evolutionary methods, the two 

algorithms are particularly suitable for application to dis-
crete multicriteria optimization problems and are accord-
ingly equipped with mechanisms that enable the determi-
nation of a Pareto ranking.  

Although the NSGA-III, in contrast to NSGA-II, is 
equipped with a lot of normalization for distance calcu-
lation and a Niching mechanism, it does not provide bet-
ter results for every application. For a more detailed ex-
planation of the algorithms, it can be referred to the cor-
responding literature. 

The metaheuristics are implemented in the Python 
programming language and coupled to the Tecnomatix 
Plant Simulation software from Siemens, in which the 
simulation model was created, using the Component Ob-
ject Model (COM) interface. The interface makes it pos-
sible to control Tecnomatix Plant Simulation from other 
programs so that they can, for example, start simulation 
runs, change model parameters and record results.  

After the generation of solution candidates in the me-
taheuristic in Python, these are transferred to the simula-
tion model and then a simulation run is started from Py-
thon. The termination of the simulation is communicated 
via an event in the COM interface, after which the results 
of the simulation model are transferred to Python.  

To increase the computing speed, an additional paral-
lelization of simulation runs on several cores of the CPU 
was realized. Figure 4 shows the process flow of the sim-
ulation optimization roughly by means of a process dia-
gram. 

 
Figure 4: Process diagram of the simulation-based  

optimization. 

5 Results of the Experiments 
An experimentation plan was developed for the dif-

ferent algorithms with varying configurations. The de-
sign consists of four experiments that investigate the 
quality of the different algorithms as well as the different 
proportions of material reallocations (MR) for a given 
population size (PS). The plan can be found in Table 1. 

 

Experiment ID Algorithm MR PS Generations 

Experiment 1 EXP 01 NSGA-II 33 % 50 50 

Experiment 2 EXP 02 NSGA-II 0 % 50 50 

Experiment 3 EXP 03 NSGA-III 33 % 50 50 

Experiment 4 EXP 04 NSGA-II 66 % 50 50 

Table 1: Experimentation plan. 

In this simulation study, a metaheuristic terminates after 
50 generations. This results in 2,500 possible solutions 
from one metaheuristic. To account for stochastic signif-
icance, two replications are performed for each experi-
ment. Thus, 5,000 possible solutions need to be evaluated 
for one experiment. The simulation period is one year per 
simulation run. The results are shown in a scatter plot in 
Figure 5. 

 
Figure 5: Scatter plots of the objective function values. 

 
Especially in the experiments with a low proportion of 
material reallocations (experiments 1-3), a roughly linear 
dependency between the target variables can be seen. 
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This result can be attributed to the fact that a lower 

service-level is associated with the fact that the desired 
production quantity was not achieved and therefore the 
machines consumed less energy due to less total produc-
tion quantities. Since shortage costs are integrated into 
the cost function in addition to transportation, ordering 
and inventory costs, such candidate solutions incur cor-
respondingly high costs due to poor delivery service with 
low energy consumption.  

With a higher proportion of material reordering, 
promising solution candidates can be identified that 
achieve low costs and energy consumption with a good 
service level. This is possible because distribution centers 
vary in energy efficiency. Therefore, material realloca-
tions with efficient inventory parameters are identified so 
that the materials are produced both close to the customer 
and at energy-efficient locations. 

Furthermore, a large spread of resulting points occurs 
in the cluster for experiment 3. This can be explained by 
a different selection operator of the NSGA-III algorithm 
compared to NSGA-II. The pareto sets of the experi-
ments in Figure 6 provide an even more explicit way of 
interpreting the results. 

The most promising pareto set tends to be generated 
in Experiment 4. Compared to the pareto sets from the 
remaining experiments, several candidate solutions have 
both better delivery efficiencies, energy consumptions 
and overall costs. Many candidate solutions from the pa-
reto set in experiment 4 would dominate large portions of 
the remaining pareto sets. 

 
Figure 6: Pareto sets of the experiments. 

As anticipated, a single best solution which dominates all 
three objective functions was not found due to the various 
trade-off effects within a supply chain.  

 

Nevertheless, recommendations for a course of ac-
tions can be derived from the generated pareto sets, de-
pending on the individual weighting of the target system. 
Experiment 4 delivered solution candidates with total 
costs of about 6.5 million Euros, a power consumption of 
about 330,000 MJ and a supply readiness level of about 
99 %. Solutions with better energy consumption exist, 
but the selection of these solutions significantly worsens 
the service-level as well as the total costs.  

Unless individual preferences in the use case over-
prioritize energy consumption and perfect delivery per-
formance, this underlying combination of decision varia-
bles is an extremely eco-efficient configuration for the 
use case at hand. 

6 Summary and Conclusion 
The simulation-based optimization for the configuration 
of eco-efficient supply chains presented in this paper rep-
resents a high-performance tool for the generation of tar-
get system specific pareto sets. The integration of the tar-
get value energy efficiency into a three-dimensional tar-
get system supplemented by the dimensions cost and ser-
vice level in combination with the chosen algorithms and 
simulation tools represents an innovative approach that 
stands out from the previous state of the art. Within the 
evaluation of the experiments, promising eco-efficient 
configurations could be identified and corresponding as-
signments of the decision variables for the use case re-
garding material reallocation, order point and target in-
ventory could be derived. The experiments also made it 
clear that the NSGA-II algorithm was able to identify bet-
ter solution candidates than the NSGA-III in the consid-
eration of this use case. 

Further research needs to address other methods like 
reinforcement learning instead of metaheuristics chosen 
in this paper. Furthermore, the choice of a different sim-
ulation tool (e.g., SimPy), which completely avoids ani-
mations, could allow a more performant simulation-
based optimization. This could potentially generate faster 
solution candidates. Furthermore, it is possible to inte-
grate additional components of energy consumption, e.g., 
caused by transportation, into the target system. 
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Abstract. Despite continuous improvements in model-
ling, software tools and data availability, simulation pro-
jects of production systems still require a lot of manual 
effort, expertise in various disciplines and time. In many 
projects the high initial invest for building the simulation 
model is followed by a rather short period of experimen-
tation and analysis. As production systems have to be 
adapted at an increasing pace to respond to rapidly 
changing markets and business environments, simulation 
models of these systems become outdated earlier, reduc-
ing their useful time window. One way to extend this time 
window would be the implementation of a method of au-
tomated comparison with the current production systems 
and subsequent self-adaption of the model to reality to 
maintain and even improve its accuracy over time. This 
approach will be presented and validated at a real world 
use case. Such an enhanced simulation model can be 
called a digital twin of the production system. 

Introduction 
Discrete-event simulation models (DES) permit the in-
depth analysis and evaluation of improvement ideas on 
existing production systems without having to interfere 
with running production, which makes them a powerful 
tool for efficiency improvement of production [1]. Yet, 
in most companies simulation models of production sys-
tems are still built and used only in temporary projects 
[2]. This leads to limited benefits by high initial costs, 
since simulation models require a lot of expertise and 
time to be creates and implements and even more to ob-
tain satisfying accuracy.  

A longer usability would improve the return on in-
vestment of simulation models. But once a model is cre-
ated, it constantly has to be adapted to changes in the real 
production system, if it shall be used over the whole life 
cycle of the production system for ongoing analysis and 
improvement. Since manual adaption is extremely time 
consuming, an approach of continuous validation of sim-
ulation models and automated updating was developed. 
Validation is by VDI [2] defined as the “examination of 
the model as to whether the real behaviour of the mod-
elled system is sufficiently well rendered with regard to 
the examination target” (part 1, p. 21). The continuous 
validation and update from real production data turn the 
simulation model into a real digital twin of the production 
system [3]. 

1 Literature Review 
1.1 Model generation and maintenance 
[4] was one of the first to try semi-automated simulation
model generation. His approach primarily uses CAD data 
in STEP-format (STandard for the Exchange of Product
model data) to model the layout of the production system
automatically. Focussing more on model parameters, [5]
proposed an approach to parametrize a model template,
which was developed a-priori by experts, with data from
ERP (Enterprise-Resource-Planning ) and PDA (Produc-
tion Data Acquisition) systems and performed an analy-
sis of model convergence to reality.

[6] presented different tools and methods to automati-
cally generate simulation models which help designing a 
high-automated update process. One important step in this 
research field is the dissertation of Bergmann [7] which 
uses the Core Manufacturing Simulation Data standard to 
create simulation models. [8] introduced the concept of a 
Self-Adaptive Discrete Event Simulation (SADES) but did 
not provide an exemplary implementation. 
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A recent and more elaborate overview of existing ap-
proaches is given by [9]. 

1.2 Data input for simulation models 
[10] provide an early discussion of chances and obstacles 
to automated data input, but IT-systems in production 
have changed a lot in the last 20 years. [11] shows how 
automated input data management can lead to time re-
duction and enhanced performance. 

Several models and system architectures have been 
proposed to model the data exchange between physical 
and digital production systems. Those models are the 
foundation of the optimization and updating process of 
digital twins [12,13]. These works focus on the input side 
of the digital twin and updating, but do not discuss output 
validation and related automated update triggering in 
greater detail. Recent work of [14] presents a use case for 
data input in a remanufacturing facility. 

1.3 Model validation 
It exists a broad literature concerning the validation of 
computer models ranging from general discussion of dif-
ferent statistical tests methods [15,16] over the assesment 
of the general forecast possibilities in particular domains 
[17] to finetuning of specific tests in certain domains, for 
example ecological modelling [18].  

There are also various works on the challenge of sim-
ulation model validation [19].  

A general practical guide for validation was published 
and applied to two discrete simulation models of manu-
facturing cells by [20]. 

1.4 Open research topic 
Most of the existing approaches focus on automatic 
model generation. Some end up in a model translation, 
where the production sys-
tem is modelled in a cer-
tain modelling style and 
then translated into an 
DES, which only decre-
ases the modelling effort, 
if a model in the original 
modelling environment 
already exists [21]. 

To tackle the problem 
of the need for initial mo-
delling and because com-
mercial simulation tools 

permit the easy and intuitive creation of simple models 
even for beginners, the presented approach chooses a dif-
ferent path: An existing model, which is manually mod-
elled and implemented in a commercial simulation soft-
ware, shall be enhanced by validation and update mod-
ules to turn it into a digital twin, which permits its use 
over the entire life time of the production system. The 
hypothesis is that the automated validation and updating 
can improve the initial models performance in terms of 
prediction accuracy.  

2 Own Approach 
The presented approach is explicitly aimed at simulation 
models of existing production systems, which shall be im-
proved or controlled. It does not work for planning simu-
lation models of production systems, which are not yet ex-
isting, since a comparison to reality and real data-based up-
dates are impossible. Nevertheless, the approach can be 
used to transform planning simulation models into process 
accompanying simulation models during the building and 
commissioning phase of the production system. 

2.1 Process flow 
Production lines evolve over time and thus the input data 
needed for the simulation model, such as process times, 
availabilities, quality rates etc., change. Therefore, it is 
necessary to ensure that the digital twin always stays up-
to-date and offers a close representation of reality in a 
given time period. The presented solution is composed of 
a two parts iterative process (Fig. 1): the validation and 
the automated updating procedure. The simulation model 
itself is built and validated beforehand by simulation ex-
perts, following [2]. 

Figure 1: Iterative process of validation and automated updating. 
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2.2 Validation 
The objective of the validation is to automatically com-
pare the simulation model with reality on different levels. 
The first step is to compare the output of the simulation 
model and reality by using carefully chosen Key Perfor-
mance Indicators (KPIs) and boundary values. Further 
steps are an in-depth analysis using regression analysis. 

Deviance measures 
To evaluate the deviation of simulation runs to real-

ity, the relative error (see Eq.1) and the NRMSE (Nor-
malized Root Mean Square Error) (see Eq.2) are used. 
The variation quantifies the final state of production of 
the studied period whereas the NRMSE quantifies the 
difference between reality and simulation during the 
course of the studied period.  

 = 100 (1) 
 

with Nreal ,Nsim being the total amount of produced part at 
the end of the studied period respectively in reality and 
in simulation. 

= 1 , ,  (2) 

 

with xreal,i and xsim,i representing the total amount of pro-
duced parts at each point in time ti of the studied period, 
respectively for reality and simulation. 

Another possibility to measure the prediction error of 
the simulation model is Theil’s U2 (see Eq.3) which be-
comes 0 for a perfect prediction and 1 if equal to the naïve 
prediction [22]. When using Theils U2 it is important to 
know that big prediction errors have a greater influence 
on the metric [23]. 

= 1 ( , , )²1 ( , )²  (3) 

Regression analysis 
To get an even better understanding of the behaviour 

of digital twin and reality, it is also helpful to look at the 
linear regression fit of actual versus predicted values 
[24]. One important parameter to measure the difference 
between the simulation and real system using this regres-
sion approach is R² [25]. 

R² = (   )(    )  (3) 

The regression fit can also be described using the inter-
cept (a) defined in Eq.4 and the slope b (Eq.5) of the re-
gression line. For a perfect fit the slope would be 1 and 
the intercept would be 0. =  –     (4) 

= (   ) (   ) (   )   (5) 

Consequences of validation 
If the model output values deviate from the real output 
less than a predefined degree, it means the digital twin 
satisfies the expectations and represents the reality to a 
satisfactory extent. In the case that outputs do not match, 
input values of the digital twin have to be examined in 
order to differentiate between input parameters that are 
still up-to-date and obsolete ones. According to these 
analysis results, the automated updating will be triggered 
precisely for the relevant parameters. 

2.3 Update 
In order for the automated updating process to be effi-
cient, two prerequisites have to be fulfilled. A digital twin 
where the most effective input parameters are character-
ized as well as a data pipeline between data sources and 
simulation system are indispensable. Furthermore, the 
automated updating process allows replacing outdated 
data. 

Once the update is performed, a simulation run is re-
alized and the validation process is repeated to check the 
validity of the updated model. The whole process is re-
peated until the output is within the boundaries or until 
the digital twin cannot be further improved. In this case 
feedback is given to the user that an appropriate level of 
closeness could not be reach automatically and a manual 
intervention is necessary.  

An important outcome of this iterative process is to 
choose an appropriate time period for the data acquisi-
tion, that consequently gives the best compromise be-
tween data meaningfulness and acquisition effort while 
satisfying the performance criteria of the digital twin. 
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3 Use Case 
The described approach was developed in a research part-
nership between of the wbk Institute for Production Sci-
ence at the Karlsruhe Institute of Technology (KIT) and 
the central department Connected Manufacturing of the 
Bosch Powertrain Solutions division with the goal to de-
velop an agile production system. Its application and val-
idation are also part of this joint research project. 

3.1 Production system 
The exemplary production system, for which the digital 
twin is implemented, assembles car engine components 
in high volume and is composed of two areas which are 
connected via a conveyor. The two areas are assembly 
and testing, each semi-automated, following the Chaku-
Chaku principle. This means that the machines perform 
their processes mainly in an automated manner and the 
workers are primary required for loading and unloading 
of machines and transporting parts between them. The 
line produces various product types with differing mate-
rial flows, processing times, etc. The number of workers 
in each area varies due to external factors as vacations, 
sick days, reduced customer demand, trainings, etc. This 
has to be considered in the validation of the model. His-
toric production data from various sources is stored in a 
central data lake, including process times, change over 
delays, machine failures, scrap rates, etc. The software 
“Tecnomatix Plant Simulation” by Siemens is used to im-
plement the digital twin. 

3.2 Implementation 
Using the approach described above, a validation tool 
that enables the validation and automated updating pro-
cess is implemented. Before running the simulation 
model, the validation has to gather information about the 
system status at each point of time of the validation pe-
riod from existing information systems such as manufac-
turing execution systems (MES) and enterprise resource 
planing (ERP) systems. This includes the number of 
workers, produced product types and exceptionally long 
downtimes (more than one hour), that appear very rarely. 
If the simulation run would not consider this information, 
its comparison to reality would not be meaningful. The 
information about the number of workers in the produc-
tion system at a certain period in time is not stored in the 
data lake, but in a different IT-System which is not ac-
cessible and therefore has to be added manually. 

A python script preprocesses the real and simulation 
output data and compares them automatically. In the use 
case the chosen characteristic KPIs are: the progression 
of produced parts over time, the variation of the hourly 
Overall Equipment Effectiveness (OEE) as well as the to-
tal OEE within the analyzed time period. These KPIs give 
an overview over the systems performance and keep 
track of the behaviour of the digital twin during the whole 
simulation run. The permitted deviation of each KPI is 
decided on accordingly to the company’s performance 
goals and the systems inherent fluctuation. In the use 
case, the corresponding threshold of permitted deviation 
shall not exceed 3% for the relative error and 5 for 
NRMSE.  

If the validation process results in higher deviations, 
another Python script performs the automated update by 
directly accessing the IT systems and data warehouses to 
obtain the latest input data. The data pipeline is composed 
of SQL queries and then filtered and processed into ex-
ploitable update data for the Plant Simulation software. 

4 Results  
Four experiments were conducted on three different 
weeks of production. The first experiment validates an 
input data set and the model`s behaviour with the basic 
KPIs and their static thresholds, while the second exper-
iment provides an in-depth analysis of the behaviour us-
ing more advanced regression and statistical KPIs. The 
third and fourth experiments highlight the use of an auto-
mated targeted update to correct the input data and enable 
a better fitting of simulation with reality. 

4.1 Automated validation 
The first experiment was conducted for a production pe-
riod of one week. To model the non-deterministic behav-
iour of the simulation, five simulation runs with different 
random seed values were conducted for each experiment 
with Plant Simulation Tecnomatix to get a statistical con-
fidence of the results. Those five runs were considered 
sufficient as they well reflect the statistical repartition of 
the model while ensuring an acceptable optimized run 
time of the experiment. The automated validation com-
pares each simulation run with reality and on the one 
hand returns graphs (Figure 2) to help the user visualize 
the part’s production during the production period. On 
the other hand, it generates key values to quantify the 
production systems behaviour (Table 1).  
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Figure 2 shows a good fit of line output between the 

simulation runs and the reality for both the assembly and 
testing lines. This visual analysis is confirmed by the cal-
culated key values from Table 1. The mean variation for 
both lines is under 3% and the mean NRMSE is under 5. 

 
Figure 2: Validation output of assembly and testing  

line – experiment 1. 

Line 

Produced 
parts  
reality 

Mean 
produced 
parts  
simula-
tion 

Mean 
Variation 
(%) 

Mean 
NRMSE 

As-
sembly 

3650 3677 1.13 2.69 

Testing 3639 3545 2.58 3.57 

Table 1: Results of automatic validation. 

 
The fixed criteria from Section 3.2 are therefore fulfilled 
and the input data is considered still up-to-date. The focus 
of the analysis lies on the number of produced parts since 
the OEE follows this number linearly. 

4.2 In-depth analysis 
The second experiment focuses on an in-depth validation 
of another week which has a different production plan 
with different product variants and different production 
breaks. The visual analysis in Figure 3 already indicates 
a good fit between the curves of reality and the simulation 
runs. When we are now looking at the mean deviation of 
overall output, we see that it is 2.0% and 1.64%, which is 
lower than the defined thresholds, therefore the valida-
tion is positive according to this indicator. The NRMSE 
is 4.55 for assembly and 4.82 for testing, which also in-
dicates a good fit of the model given the threshold of 5. 

 

 
Figure 3: Validation output of assembly and testing  

line – experiment 2. 

Figure 4 shows the regression analysis of experiment 2 
including the related parameters for assembly and testing. 
R2 reaches with 0.86 and 0.9 quite high values which ex-
presses a good fit of the simulation model to reality as 
well. The slope is in both cases very close to 1 which is 
another indicator that the model in general provides a 
good estimation for the behaviour of the real system. The 
intercepts are 0.56 and 0.96 which is also a good value con-
sidering the absolute scale of the axis ranges from 0 to 100.  
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Therefore, the regression analysis underlines the pos-

itive validation result of the subjective visual impression 
and the basic deviation analysis. Theil’s U2 is 0.52 and 
0.54 respectively which also indicates a good fit. 

 

4.3 Targeted update of the input 
parameters 

For the third and fourth experiment, simulation and vali-
dation were conducted for another week of production. 
In the third experiment, the same input parameters as in 
Section 5.1 were used. However, the obtained results be-
fore any update (Table 2, Figure 5) from the validation 
process exceeded the fixed threshold.  

Therefore, an update of input parameters is triggered. 
The first step of the update process is to determine which 
data must be replaced and if the line is partially or totally 
concerned by the update. The mean relative error on both 
assembly and testing line are bigger than 3%, further-
more the NRMSE of the testing line is above 5. Conse-
quently, both lines have to be updated. 

Among the input data, it is possible to update the fol-
lowing parameters: Part routing, worker routing, failures, 
machine process times, manual process times, setup time 
and planned cycle times. 

 

 
Figure 5: Validation output before update on assembly 

and testing line – experiment 3. 

Nonetheless, among those parameters few register nota-
ble deviation during the chosen time period. In this paper, 
the focus was put on the machine process times, which 
encountered consequent variation over the studied week. 
After recalculating the probability density function of the 
machine process times from real data with a python 
script, the targeted update process compares the new cal-
culated values with the old values for each machine. The 
machine process times are modelled by a normal distribu-
tion through mean and standard deviation. If the mean dif-
fers more than 0.15 seconds and the standard deviation 
more than 0.2, the old value is replaced with the new value. 
As mentioned above, in this use case the other input data 
did not change significantly and did not need any update. 

Once the input parameters are updated, a fourth ex-
periment with the newly calculated input data is con-
ducted. Figure 6 depicts the output validation after the 
update for assembly and testing lines. Figure 6 shows im-
provement compared to Figure 5. The behaviour of the 
simulation is closer to reality and shows less variability. 
Those observations are verified through the key values in 
Table 2. For the assembly line, the mean relative error of 
simulation went down from 3.03% to 0.92% and the 
mean NRMSE went from 2.99 to 1.77.  

Figure 4: Regression analysis of testing and assembly  
line - experiment 2. 
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Figure 6: Validation output after update on assembly 

 and testing line – experiment 4. 

The capability of the targeted update process was none-
theless proved but still needs further improvement partic-
ularly concerning the threshold values and the trigger 
conditions for the targeted update mechanism. 

 

Experi-
ment Line 

Mean dif-
ference 
(%) 

Mean 
NRMSE 
output 

Validation 
passed? 

Before 
update 

Assembly 3.03 2.99 No 

After 
update Assembly 0.92 1.77 Yes 

Before 
update Testing 6.32 5.69 No 

After 
update Testing 3.2 3.22 No 

Table 2: Validation metrics before and after automatic  
update. 

 
 
 

For the testing line the mean relative error went down 
from 6.32% to 3.2% and the NRMSE from 5.69 to 3.22. 
A net improvement is indeed realized.  
The behaviour of the assembly line is now completely 
validated whereas the testing line still has a mean relative 
error barely above 3%. But the NRMSE has been im-
proved and is now below 5. The machine process times 
could not be further improved for the testing line. In a 
next step, other parameters of the simulation models, i.e. 
availabilities, scrap rate, etc. should be updated. For these 
parameters an automated update process is not yet imple-
mented. 

5 Conclusion and Outlook 
Motivated by the ever-changing structure of modern pro-
duction systems, an approach to enable simulation mod-
els to mirror these changes was developed. The approach 
contains a module for continuous validation which com-
pares simulation KPIs to real historic KPIs. Various met-
rics to measure the deviation of the simulation to reality 
for this validation module where discussed and imple-
mented ranging from simple deviation KPIs to more 
complex statistical and regression values. If a certain de-
viation threshold is surpassed, this module triggers an au-
tomated update module which changes the simulation 
model to better reflect reality.  

The application of this approach at a semi-automated 
production line of automotive components leads to a con-
vergence of the simulation model to reality, turning it into 
a digital twin. 

Further research has to be done to evaluate the behav-
iour of the digital twin in different scenarios of changes 
in the production system as well as its robustness to in-
complete and/or biased data. This includes the further 
study of the behaviour of the various reality metrics in-
troduced to this paper. Another line of research would be 
the extension of the available update mechanism of the 
digital twin. This could be combined with a thorough ex-
amination of the validation KPIs and their thresholds. 
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Abstract.  The shift in the mobility sector towards electric 
vehicles is responsible for a growth in the market demand 
for lithium-ion batteries. To follow this trend, the current 
200 GWh global production capacity of lithium-ion batter-
ies will present an annual increase of up to 300 GWh in 
the next years. Characterized by an energy-intensive pro-
cess chain and high material costs, battery production is 
sensitive to production scrap rate. Current works on en-
ergy and cost assessment in battery production consider 
scrap rates based on static values derived from historical 
production data. Thus, there is a lack of works that dy-
namically analyse the influence of different scrap rates on 
the process chain, e.g. considering machine states and uti-
lisation capacity. To tackle this challenge and contribute to 
more sustainable and competitive battery production, 
this work presents a simulation-based methodology to as-
sess the indirect and direct energy demand and costs as-
sociated with production scrap. 

Introduction 
Lithium-ion batteries offer a wide range of applications, 
with the mobility sector accounting for more than 60% of 
the 200 GWh global demand in 2019. To follow the elec-
tromobility growth, studies predict that the global capac-
ity of production of lithium-ion batteries will present an 
annual increase of up to 300 GWh in the next years [1]. 

Due to its energy-intensive process chain, manufac-
turing is responsible for up to 45% of the battery cradle-
to-gate environmental impacts [2]. Besides the environ-
mental impact, production is also the main cost driver. 
Here material is a decisive aspect, accounting for up to 
70% of the costs of a single battery [3]. Therefore, a more 
environmentally sustainable and cost-competitive battery 
cell production depends on material and energy-efficient 
production. The reduction of production scrap, i.e. mate-
rial waste intrinsic to the process or resultant from mate-
rial flaws, increases the material efficiency and reduces 
the production costs. However, reducing the scrap close 
to zero requires sophisticated strategies and significant 
investments [4].  

For large-scale production, production scrap rates 
vary from 5 to 10% [2]. Different works in the battery 
production context with a focus on energy efficiency [5–
7] and cost estimation [8–10] consider production scrap
in their models and calculations. Nevertheless, there is a
lack of works that dynamically analyse the influence of
different scrap rates on the process chain, e.g. consider-
ing machine states and utilisation capacity. Simulation-
based approaches represent a well-established tool for
understanding complex relationships and dynamics of
process chains and have already been applied in the anal-
ysis of material and energy flows as well as production
improvements [6,11].

Against this background, this work proposes a com-
bined discrete event and agent-based simulation ap-
proach to (i) dynamically study the effect of different 
scrap rates on a process chain level and (ii) provide iden-
tification of critical processes from energetic and eco-
nomic perspectives. 
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1 Theoretical Background 

1.1 Lithium-Ion Battery Production 
The battery cell production is characterized by a rigidly 
interlinked process chain with numerous heterogeneous 
process steps. In general, the process chain can be di-
vided into electrode production, cell production, and cell 
conditioning. However, slight variations might occur in 
the battery process chain depending on the respective 
process technology and the battery cell design, e.g. 
pouch, cylindrical or prismatic. In electrode production, 
anodes and cathodes are produced in batch and continu-
ous processes, located in separate production lines to 
avoid contamination [9].  

After a dry and wet mixing process, the respective 
material suspension is coated and subsequently dried to 
produce a composite structure. Afterwards, anode and 
cathode coils are calendered to reduce their porosity and 
slit to width and length before they enter the dry room for 
cell production, characterized by discrete processes. 
First, the coils are further cut into single electrode sheets. 
For pouch cells, the individual electrode sheets are 
stacked together with a separator. The electrode-separa-
tor assembly is contacted internally and afterwards in-
serted into a pouch bag housing. The housing is then 
filled with electrolyte and subsequently sealed. In cell 
conditioning, the formation and aging of the battery cells 
are conducted [3]. 

Scrap rate information in the literature is diverse and 
limited, usually derived from input-output rates and his-
torical data. Based on previous publications, Drachenfels 
et al. (2021) present variations in scrap rates according to 
production scales, e.g. 5 to 20% for small and 5 to 10% 
for large factories [2]. Nelson et al. (2019) present pro-
cess-specific scrap rates, varying from 1 to 8% according 
to the process characteristics [8]. Schünemann (2015) pro-
poses even lower rates, e.g. 1% for the mixing process and 
0.2% for stacking [9]. Production scrap rate has also a ma-
jor influence on production energy demand and costs. 

Energetic Perspective.  The battery cell production 
requires a significant amount of electrical energy, espe-
cially caused by its energy-intensive processes, e.g. coat-
ing/drying, calendering, and formation [5]. In addition, 
the technical building services (TBS), which provide the 
necessary environmental conditions, also contribute to a 
significant share of the total energy demand [12].  

The literature reports large variations in energy de-
mand per energy storage capacity at an industrial scale, 
ranging from 47 to 162 Wh per Wh [7]. These variations 
can be explained by the production scale, the complex 
and dynamic combination of continuous and discrete pro-
cesses as well as the selected process parameters and 
boundary conditions [2,13].  

The assessment of energy considering scrap rates has 
been shown in different works. Thomitzek et al. (2019a) 
present a material and energy flow analysis based on in-
put-output ratios and the measured energy demand [5]. 
Weeber et al. (2020) propose a simulation on process 
chain and process levels to assess the overall energy de-
mand [6]. Wessel et al. (2021) provide an analysis of en-
ergy demand due to scrap for a pilot line based on pro-
duction data [12]. The results show critical energy-inten-
sive processes when analysing energy demand associated 
with scrap. Although the scrap rate has been considered 
in many works, it was usually limited to static average 
values based on production data. Thus, it is necessary to 
dynamically analyse the influence of scrap rates in bat-
tery production on the energy demand.   

Economic Perspective. Material costs represent the 
largest share of battery production costs. Kwade et al. 
(2018) present in a cost breakdown that 74.9% of the 
costs are caused by material and 3.1% by energy demand 
[3]. Duffner et al. (2021) show the share of the various 
costs for an optimization scenario with materials (77%), 
machine depreciation (8%), production scrap (6%), and 
energy (3%) being the largest ones [14]. Due to the im-
portance of material efficiency for more competitive pro-
duction, production scrap has been considered in differ-
ent cost estimation models. A simulation-based approach 
to assess the importance of economy of scale on produc-
tion costs is presented by Mauler et al. (2021) which con-
siders production bottlenecks and end-of-line scrap rates 
[10]. Concerning process-specific costs, Kwade et al. 
(2018) declare that processes further down the process 
chain are more cost-sensitive since they embody the 
value added by the previous processes [3].  

Duffner et al. (2021), on the other hand, mention an 
electrode production process (coating) as critical [14]. 
The review on cost models presented by Duffner et al. 
(2020) lists many works which consider process-specific 
parameters in their estimations [15].  
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However, none of them dynamically analyses the process 
chain when defining scrap and energy-related costs. 
Based on the relevance of the material efficiency to the 
battery cell costs, it is fundamental to consider the eco-
nomic influence of different scrap rates. 

1.2 Simulation Approaches for Process 
Chain Analysis 

Simulation is a consolidated approach to analyse differ-
ent production scenarios and process chain performance 
[11]. In the battery production context, it has also been 
identified as an effective tool to assess and analyse en-
ergy demand for different production and machine con-
figurations [6,13]. Discrete event simulation (DE) ena-
bles a better understanding and reproduction of material 
and energy flows within the production as well as pro-
vides insights on dependencies between processes. 
Agent-based simulation (AB) enables to describe ele-
ments, e.g. machines or products as a unique agent, study 
their interactions, and store specific data. The use of DE 
and/or AB to analyse production throughput, machine 
availability, and process-specific energy demand in the 
battery context was already proposed by different works 
[6,11,13]. When considered, scrap rate is described as a 
process characteristic based on static data to support anal-
ysis of input and output flows between processes.  

Therefore, there is a lack of work with 
focus on the production scrap rate and 
its influence on the process chain. 

2 Methodology 
A simulation-based methodology was 
developed to study the influence of 
different production scrap rates on the 
process chain dynamics with a focus 
on energetic and economic perspec-
tives, as described in Figure 1. 

2.1 Hybrid Simulation 
The first methodology part is a py-
thon-programmed hybrid simulation 
that combines DE and AB approa-
ches. The focus of the DE is to repro-
duce the material and energy flows 
along the process chain, consisting of 
the following elements: machine, pro-
cess, and buffer.  

A process can be executed by more than one machine and 
a machine can be assigned to more than one process. In 
addition, it is possible to have buffers to store finished 
parts. Otherwise, the finished part is temporarily stored 
in the machine, until it is taken to the next process.  

A machine presents five states: off, ramp-up, idle, 
processing, and failure. Off is the machine state either at 
the beginning of the simulation or after breakdowns. The 
ramp-up state starts after the machine is switched on until 
it is ready to produce. A machine is in idle state before 
processing, i.e. waiting for input material and machine 
availability. The processing state represents the produc-
tion itself and, in some cases, the storage of finished 
parts. Lastly, a machine may break during processing. 
Average power consumption and duration of each ma-
chine state are inputs defined by the user. An overview 
of the conditions for state changes and power consump-
tion over time are shown in Figure 2. 

The conditions for each state change are represented 
in Figure 2a. With exception of the off state, all state 
changes are triggered by an event. Ramp-up and failure 
events are time-regulated, based on the user inputs re-
garding the average and variation of the process duration. 
The processing state is time-regulated and additionally 
considers the storage of finished materials. The idle state 
is controlled by two events: input and machine availability. 

Figure 1: Simulation-based methodology to assess the effects of  
production scrap on the process chain. 
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Figure 2: (a) Machine state chart and (b) machine energy 
profile based on the duration and average 
power consumption of the different states. 

The last condition is especially relevant for machines as-
sociated with more than one process. The timestamp of 
changes in the machine states as well as power consump-
tion values result in the energy profile shown in Figure 2b. 

The AB simulation focuses on the agents, e.g. slurry 
batches, electrodes, and battery cell.  

During the simulation, agent-specific information re-
garding the process (e.g. timestamp and energy demand) 
and the material (e.g. input, output, and scrap ratios) is 
stored. The interaction between agents is achieved by the 
possibility to combine them. For example, a battery cell 
contains various cathodes, these cathodes originate from 
the same slurry batch.  

The agents are either located in a buffer or a machine, 
which provides the integration of both DE and AB ap-
proaches. A timestamp is stored whenever a state change 
in the DE triggers a change in the agent location change. 
Further process and material-specific data, e.g. scrap and 
output amount as well as energy demand are also stored 
within each agent.  

The integration of both simulation approaches pro-
vides knowledge regarding the conditions under which 
each agent is produced and the associated energy de-
mand. The main program functions responsible for this 
integration are described in Figure 3. 

Scheduler is one of the main functions, responsible 
for initialising the machines at the simulation start. It is 
also called before and after processing to check the ma-
chine and input availability. The acquisition of input ma-
terial and storage of finished parts are executed by the 
inventory_get and inventory_put functions. These func-
tions are based on the Python package SimPy which en-
ables an allocation of materials in a virtual container and 
provides, for example, the possibility to wait until the 
material is available.  

Lastly, the functions agent_get, agent_put, and 
agent_update support the AB simulation by managing 
the creation and location of agents as well as data storage. 

Figure 3: Program main functions for the DE and AB simulation approaches. 

Agent_get
Define agent unique ID
Remove agents stored in 
buffers or machines

Scheduler
Check machine availability
Initialise machine

Inventory_get
Get input from buffer or
previous machine

Inventory_put
Store output in a buffer or
current machine

Agent_put
Add agents to buffers or
machines

Agent_update
Store agent-specific data

Processing
Calculate process duration
May be interrupted by
break event

Called after the function

DE

Called inside the function

AB
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2.2 Assessment of Production Scrap 
The simulation results are used to assess the en-
ergetic and economic influences of different 
production scrap rates, considering direct and 
indirect parameters. Different power consump-
tion values are associated with the machine 
states ramp-up, idle, and processing. Energy de-
mand during processing results from the aver-
age consumption and process duration, and 
may, therefore, be directly associated with a 
scrap agent. As consequence, energy demand during the 
processing state is classified as direct parameter. Param-
eters affected by scrap on a process chain level are clas-
sified as indirect. Production scrap may cause, for exam-
ple, changes in the material flow and affect the duration 
of waiting times and energy demand of machines. There-
fore, energy demand in idle state is considered an indirect 
parameter. In battery production, TBS is a major energy 
consumer, responsible for maintaining adequate produc-
tion conditions. Since these conditions must always be 
achieved, independently of the throughput and scrap rate, 
TBS energy demand is constant and, therefore, not con-
sidered in this assessment. 

A complete estimation of production costs includes 
fix and variable costs. Fix costs are associated with in-
vestments (e.g. machine acquisition), building, mainte-
nance, and overhead. Variable costs comprehend mate-
rial, energy, and labour. Since the fixed costs are strictly 
dependent on the production scale and are constant re-
gardless of the production throughput and scrap rates, 
they are not considered in this work. Moreover, for con-
stant working hours and number of shifts, labour costs 
also remain the same. Thus, material and energy are the 
only costs considered in this assessment. Material and 
processing energy costs are classified as direct since they 
are calculated based on agent-specific information, e.g. 
amount of scrap and energy demand. Indirect parameters 
comprehend the ones affected by scrap on a process chain 
level, i.e. energy costs related to idle states. 

3 Use Case: Battery Cell 
Production 

The proposed methodology was applied to the pilot line 
of the Battery LabFactory Braunschweig (BLB). The en-
ergy and process parameters to produce a 10-compart-
ments pouch cell were automatically acquired via the 
SCADA system described by Turetskyy et al. (2020) [16]. 

Since material prices for a pilot line are not consistent 
with the ones for a larger production scale, this use case 
considered the prices described in the BatPac cost model 
[8]. An around-the-clock production with the BLB ma-
chine capacities was simulated to investigate the depend-
encies and dynamics between processes, e.g. share of 
each machine state as well as material and energy flows. 
Moreover, differently from the BLB pilot line, the simu-
lation considered separate production lines for cathode 
and anode production, as shown in Figure 4. 

First, a one-month production with no scrap was sim-
ulated as a base scenario. Subsequently, the simulation 
was repeated in four scenarios with scrap rates ranging 
from small to large scale productions (1%, 5%, 10%, and 
15%). In each scenario, the same scrap rate was consid-
ered for every process which represents, for example, a 
yield of 90.4% for the 1% scenario. For batch processes, 
scrap is a share of the produced batch. For single unit 
processes, scrap represents an entire unit. 

The simulation results of all five scenarios were as-
sessed according to the direct and indirect parameters de-
scribed in the methodology. First, the influence of differ-
ent scrap rates was evaluated by assessing the direct pa-
rameters, i.e. the scrap-related energy demand as well as 
energy and material costs.  

Figure 5 presents the average material and energy 
costs associated with scrap per finished battery cell for 
each simulated scenario.  

As expected, a scrap rate increase is directly related 
to higher material and energy costs associated with scrap 
to produce one battery cell. However, this increase is not 
proportional to the scrap rate and affects differently the 
energy and material costs. For the 1% and 5% scenarios, 
the energy costs are slightly higher than the material 
costs. For the 10% and 15% scenarios, material costs be-
come more significant. 

Figure 4: Simulated processes adapted from the BLB production line. 
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Figure 5: Scrap-related energy and material costs to 
 produce one 10-compartments battery cell 
for the different simulated scenarios. 

Scrap-related costs per cell [$] 

Energy Material Total 

5%
   

sc
ra

p 
ra

te
 C. Mixing 0.001 0.192 0.193 

C. Calendering 0.003 0.022 0.025 
Formation 0.194 12.206 12.400 

15
%

 
sc

ra
p 

ra
te

 C. Mixing 0.011 2.380 2.391 
C. Calendering 0.027 0.242 0.269 
Formation  0.585 38.567 39.152 

Table 1: Comparison of the scrap-related costs for 
selected processes considering direct parameters (en-
ergy and material costs) for 5 and 15% scrap rates. 

A closer look at the process-specific costs shows that 
some processes are more critical from an energetic per-
spective, while others present significant material costs. 
The production type (batch or single unit) also plays an 
important role in the intensity of the scrap effect at each 
process.  

Moreover, cathode and anode pro-
duction present different variations, 
since cathode production is more intense 
from both energetic and material per-
spectives. Table 1 exemplifies the pro-
cess-specific variations for one pro-
duced battery cell based on three se-
lected processes (cathode mixing, cath-
ode calendering, and formation).  

Considering the selected processes 
of the cathode production, calendering is 
the most critical one from an energetic 
perspective while mixing is the most 
critical one with regard to material costs 
for both the 5 and 15% scenarios.  

Since cathodes are produced in batches, the energy 
and material costs related to one battery cell (containing 
10 cathodes and 10 anodes) are significantly lower than 
the costs incurred in the single unit processes of cell pro-
duction, e.g. formation. Regarding the total costs, the 
most critical processes for both scrap rates are cathode 
mixing and formation. Furthermore, a comparison of the 
variations between the 5% and 15% scenarios shows that 
the total cost of mixing increases by a factor of twelve 
while the formation total costs by a factor of three. 

In a second step, the influence of scrap rate on a pro-
cess chain level was evaluated by measuring the variation 
of indirect parameters for each scenario. The energy cost 
for the entire process chain was calculated based on the 
energy demand [kWh] in idle state for a finished battery 
cell and the electricity price for business in Germany of 
0.237 $ per kWh. To provide better identification of the 
variations for each scenario, the share of costs for idle 
and processing states are compared in Figure 6. 

The results of Figure 6 reinforce that a variation in the 
scrap rate is responsible for dynamic changes in the pro-
cess chain, e.g. duration of machine states. Since the pro-
cesses are rigidly interlinked and the throughput of each 
single unit process is reduced by an increase in the scrap 
rate, processes down the process chain have to wait 
longer for input material. This increase in waiting times 
leads to higher idle state costs. The reduction of through-
put at each single unit process also leads to fewer pro-
cessed parts in one month and, consequently, to a reduc-
tion in processing times and costs. It is also important to 
emphasize that these effects are not proportional to the 
scrap rate: in comparison to the base scenario, the share 
of costs in the idle state increases by 1.8% and 10.2% for 
the 1% and 15% scenarios, respectively.  

0

50

100

150

200

250

300

350

400

0

1

2

3

4

5

6

1% 5% 10% 15%

M
at

er
ia

l c
os

ts
 p

er
 c

el
l [

$]

En
er

gy
 c

os
ts

 p
er

 c
el

l [
$]

Scrap-related energy and material costs per battery cell

Energy (Total) Material (Total)

Figure 6: Costs associated with energy demand in idle and processing states  
per finished battery cell for different scrap rates. 

57.5 55.7 53.7 50.8
47.3

6.0 5.4 5.5 5.2 5.2

36.5 38.9 40.8
43.9

47.5

0

10

20

30

40

50

60

Proc. Idle Proc. Idle Proc. Idle Proc. Idle Proc. Ilde

Base 1% 5% 10% 15%

En
er

gy
 c

on
su

m
pt

io
n 

[%
]

Share  of energy-related costs per machine state

Processing (Total) Idle (Electrode) Idle (Cell)

52.7

42.5 44.3 46.3
49.1



    Ventura-Silva et al.     Energy Demand and Costs with Production Scrap in Battery Production

SNE 32(3) – 9/2022      149 

T N 
The share in idle states also differs between the elec-

trode and cell production. As shown in Figure 6, the share 
in idle state for electrode production decreases at higher 
scrap rates. Since scrap in the electrode production leads 
to a reduction of the batch size, processes whose duration 
depends on the material quantity (e.g. coating and calen-
dering) present shorter processing times and, conse-
quently, lower idle times. As previously mentioned, sin-
gle unit processes need to wait longer for input from the 
previous processes, therefore, presenting a higher share 
in idle state at higher scrap rates. 

Overall, the results show that different scrap rates 
have dynamic effects on the process chain, altering the 
material flow and the shares in processing and idle times. 
An analysis on the process level shows that processes are 
affected differently from both an energetic and economic 
perspective. The intensity of these effects is influenced 
by the process type (e.g. batch or single unit), position in 
the process chain, material costs, and energy demand.  

4 Summary and Outlook 
Material efficiency is fundamental for more cost-compet-
itive and environmentally sustainable battery production. 
Current works on energy and cost estimations consider 
production scrap rates as static values derived from his-
torical data and do not assess their dynamic effect on the 
process chain.  

To tackle this challenge, this work proposed a simu-
lation-based methodology to dynamically study the ef-
fect of different scrap rates on a process chain level and 
provide the identification of critical processes from an 
energetic and economic perspective. First, a discrete 
event and agent-based simulation was used to study the 
material and energy flows of one-month battery produc-
tion. The results for different scenarios were analysed 
with a focus on parameters with direct relation to produc-
tion scrap (e.g. material costs and processing energy).  

In addition, the effects of production scrap on a pro-
cess chain level were assessed based on indirect parame-
ters (e.g. energy demand and costs for idle states). The 
results demonstrated the importance of dynamically as-
sessing the effects of scrap rates since they differ for each 
process and are influenced by various factors, e.g. pro-
cess characteristics, position in the process chain, mate-
rial costs, and energy demand.  

Future works will study the effect of process-specific 
scrap rates to define acceptable tolerances and support 
the planning of quality gates.  
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Abstract. The installation of offshore wind farms con-
stitutes a highly weather-dependent process. Despite
this dynamic, practice and research generally assume
fixed resupply cycles to deliver components from their
production sites to the installation’s base port, result-
ing in high storage requirements. This article proposes
a cascading discrete-event simulation framework com-
bined with offline mathematical optimizations to decide
demand-driven on suitable resupply cycle from a pool of
routes. This approach combines the advantages of both
methods by allowing high flexibility to cope with weather
dynamics while reducing the search space to a few opti-
mal alternatives. The evaluation uses two real-world use
cases. It demonstrates that selecting cycles based on
estimated weather developments reduces the required
base port storage capacity. Moreover, in some cases it
additionally maintains lower capacity levels after an ini-
tial ramp-up phase.

Introduction
Over the last years, wind energy has developed into a

primary green, sustainable energy source. Since 2010

the installed capacity of offshore wind farms has in-

creased exponentially, from 2.9 Gigawatts to 35 Gi-

gawatts in 2020 [14]. Moreover, over the last years,

most countries increased their targeted shares of renew-

able energy or moved forward their targeted dates [14].

Compared to their onshore counterparts, offshore wind

farms allow for higher capacities due to larger accessi-

ble areas at the open sea and higher wind speeds. Nev-

ertheless, the same advantages result in additional chal-

lenges for installing such wind farms, e.g., due to harder

to reach installation sites, stronger winds and weather

dynamics, and more expensive resources [16].

High wind speed poses a challenge for installation

operations at the open sea. Due to the sheer size of tur-

bines, installations require crane operations in approx-

imately 100 meters of height. Thereby, high waves or

wind speeds result in sways of several meters, rendering

installations unsafe for the crew, components, or even

the vessel and crane. Consequently, installation opera-

tions have defined limits considering these parameters.

Rippel et al. (2019) [16] provide an overview over such

limits assumed in the literature. Generally, weather con-

ditions at the open sea tend to change quickly due to

the large open area. In contrast, planners can only rely

on forecasts or historical records and their experience

when planning installations, which introduces high un-

certainties, especially during the installation’s operative

phase. Literature attributes between 15% and 30% of a

wind farm’s overall costs to logistics costs during the in-

stallation resulting from this uncertainty and the costly

resources involved in installations (e.g., [5, 11]).

Most of the literature that considers offshore instal-

lations focuses on efficient scheduling of vessels, fleet

mixes, or viable project start dates. Only a few ap-

proaches emerged over the last years that focus on the

operative phase and include forecasts in their planning.

Very few contributions include port-side resources, like

storage areas, loading bay availability, or heavy-duty

handling equipment. Nevertheless, studies show ongo-

ing trends to increasing numbers of installation, refur-
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bishing or decommissioning projects with higher num-

bers of turbines [3], paired trends to larger and heavier

turbines [22], which could quickly lead to bottle necks

within the base port availability [12].

This article proposes a cascading simulation frame-

work to support operations in determining suitable re-

supply cycles for components to adapt these cycles to

the current, predicted needs at the base port. Therefore,

the framework applies an online simulation as digital

twin of the installation process. At each decision point,

i.e., when the transport vessel starts a new resupply

cycle, the digital twin evaluates some previously opti-

mized alternatives given the current state of the installa-

tion and current forecasts as nested simulations. As the

framework allows each of these child-simulation runs to

apply the same decision process, it denotes each set of

alternatives as a cascade. In general, the approach aims

to reduce the required base port storage capacity and

initial inventory level to reduce costs and save spaces

for concurrent projects.

This article is an extended version of a contribu-

tion that was presented at the 2021 ASIM conference

"Simulation in Produktion und Logistik" [15]. In ex-

tension, this article provides a detailed description of

the framework, proposes a different method to select vi-

able weather data for the nested child simulations, and

extends the discussion of the approach’s advantages and

disadvantages by adding a second real-world use case,

modeling the installation of the wind farm "Hohe See".

1 Methods for Offshore Wind
Farm Installations

Compared to other areas in the offshore sector, only

a few articles consider installing offshore wind farms

[21]. Most articles deal with optimizing or evaluating

the installation process [16], e.g., focusing on ways to

simulate weather conditions [11], different installation

concepts [21], or fleet mixes [1]. Other authors provide

models to schedule the commissioning of vessels [8] or

operations in various resolutions, e.g., [7, 20].

Even fewer articles explicitly include port-side re-

sources like storage spaces or the resupply of compo-

nents. For example, Beinke et al. (2017) [2] evalu-

ated sharing heavy-lift vessels between several instal-

lation projects to reduce downtime due to bad weather

conditions. Newer works demonstrate an increasing de-

mand for jack-up vessels and, in consequence, port-side

resources, as first wind farms reach the end of their

life and require refurbishing or decommissioning [3].

Oelker et al. (2020) [12] evaluate available heavy-duty

storage areas at the base port in Eemshaven using a sim-

ulation study. The study shows that the port’s capacity

will reach its limits soon if current trends continue. Rip-

pel et al. (2020) [18] describe a mathematical model to

determine optimal resupply cycles based on their effi-

ciency that will be introduced later in this article.

In conclusion, the current state of the art mainly fo-

cuses on the actual installation and generally assumes

that the base port offers sufficient components. Only a

few of the presented models consider the resupply, but

all assume a fixed and reliable resupply of components

in defined intervals.

2 Process Description

Different installation concepts for offshore wind farms

exist in the literature and practice, ranging from the so-

called conventional concept, where all assemblies take

place at the installation site, over preassembly concepts

to floater concepts, where all assemblies take place in

the base port. Practice and research mainly apply the

conventional concept, depicted in figure 1. While this

section shortly summarizes this concept, a more de-

tailed description can, e.g., be found in [13, 21].

Production Port
Nacelle

Production Port
Tower

Production Port
Blades

Base Port
Storage

Installation Site
Construction

Heavy-Lift Vessel

Installation Vessel

Figure 1: Conventional installation concept (c.f. [17]).

In this concept, a heavy-lift vessel travels between

the components’ production ports and the base port,

which buffers the components for the installation. An

installation / jack-up vessel loads sets of components

and travels to the installation site to perform the assem-

bly. Jack-up vessels possess retractable pillars to mount

themselves at the installation site, effectively punctur-
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ing the sea bed to steady themselves against high waves.

While this process allows mitigating the influence of

higher waves, it results in the vessel’s need to remain

stationary until it finishes installing a turbine. Addi-

tional jack-up operations close to an already visited lo-

cation can easily damage already installed foundations

or even the vessel itself due to the already loosened sea

bed. Consequently, installation vessels always need to

load complete sets, i.e., all tower segments, the nacelle

and hub, and all blades required for a turbine. Their

capacity in terms of deck area and maximum payload

restrict the number of sets. Most vessels currently avail-

able on the market can handle four sets.

Accordingly, installation operations require com-

plete sets to be available at the base port to start, which,

in turn, requires careful planning of the resupply of

components. Therefore, practice and research assume

that the heavy-lift vessel follows a predefined resupply

cycle, visiting the production ports in a given sequence.

At the end of each cycle, a defined number of complete

sets become available at the base port. For example,

such a cycle could consist of two trips: the first trip

fetches two towers while the second trip visits the other

two ports and fetches two nacelles and six blades. In

this example, the first trip does not allow further instal-

lation operations as it is not possible to install only the

towers. Nevertheless, after the second trip, two addi-

tional installation operations become available.

Generally, project planners decide on a single in-

stallation cycle during the planning stage of installa-

tion projects, which the heavy-lift vessel repeats until

it finishes delivering all sets. On the one hand, this

approach ensures the reliable delivery of components.

On the other hand, this approach does not consider the

current situation during the project execution. The ac-

tual demand varies depending on the current weather

situation and forecasts. For example, fixed cycles can

quickly deplete the storage when facing a good weather

period. In contrast, bad weather periods heavily reduce

the demand and can result in inventory overflows, re-

quiring expensive additional storage areas or disrupting

the supply chain. In practice, planners tend to include

safety margins to the base port capacity and initial in-

ventory levels to circumvent these problems.

Nevertheless, both examples can be faced by ad-

justing the resupply cycle according to the predicted

demand. For example, longer cycles can bridge bad

weather periods by slowing down the delivery. Accord-

ingly, shorter cycles provide lower amounts faster to the

base port to fully exploit good weather periods.

3 Demand-driven Resupply by
Cascading Simulation and
Optimization

This section introduces the cascading simulation frame-

work used to select viable resupply cycles based on the

current state of the installation process. The framework

relies on a set of optimal resupply cycles that differ in

duration and number of delivered sets but provide an

optimal cycle considering the number of allowed round-

trips between one or more production ports and the base

port. At each decision point, i.e., before a new cycle

starts, the framework initializes several nested simula-

tions, each evaluating the influence of an alternative cy-

cle on the overall installation project using aggregates

of historical weather records as depicted in figure 2.

Please refer to, e.g., Kindler (2004) [9] for more infor-

mation on nested simulation in general.

Online Simulation

Framework

Child Simulation 1

Child Simulation 2

Child Simulation 3 1
st

C
as

ca
d

e

Child Simulation 3-1

Child Simulation 3-2

Child Simulation 3-3 2
n
d

C
as

ca
d

e

Figure 2: Schema of the cascading simulation concept using
three alternatives and two cascades. Dotted lines
represent decision points within each simulation.

This article uses the framework’s digital twin (on-

line simulation) to simulate installation projects using

real-world scenarios and historical weather records to

be as close to real-world applications as possible. Over-

all the framework consists of three major components:

first, the optimization of resupply cycles, second the

simulation model used for online and nested offline

simulations; and third, a simulation manager to instan-

tiate the nested child simulations and evaluate their re-

sults. While the optimization model supplies inputs to
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the framework, the later components, i.e., the simula-

tion model(s) and the manager, interact directly during

the simulation run as indicated in Figure 3.

Java

Manager

Simulation

ModelInitializes Simulation
JSON/Snapshot

Request Decision
RPC Call: List of Alternatives

� Initialize Children

� Wait for Reply
� Evaluate best Alternative

Modify Parameters
JAVA Reflections

...

Figure 3: Interaction between the manager and the

simulation components.

Once the manager starts, it initializes and runs its

simulation model using a definition of the current state

in a JSON file and, if it is a nested simulation, an addi-

tional copy of the parents state using AnyLogic’s Snap-

shot feature. While both files contain partly redundant

information, the JSON state contains additional infor-

mation, e.g., which set of historical data a nested simu-

lation should use or if the simulation could inquire the

manager about decisions (given by the number of al-

lowed cascades). Moreover, the manager registers itself

within the simulation model as an external listener, al-

lowing the simulation to call specified interfaces, e.g.,

when finishing or requesting a decision.

After initialization, the simulation model starts and

proceeds until it reaches a decision point. It generates a

list of alternative decisions, for example, by looking up

already stored resupply cycles, pauses itself, and pro-

vides the alternatives to its manager by requesting a de-

cision.

Upon receiving a request, the manager spawns ad-

ditional instances of itself, providing one of the alter-

natives and a Snapshot of its simulation’s state to each

child manager. Each of these new managers then fol-

lows the same procedure. After concluding their sim-

ulation runs, the child managers report their results to

their parent, which evaluates their results, and decides

on the best alternative. Finally, it directly modifies

its simulation using JAVA Reflections and instructs the

model to resume simulation with the new settings. This

process repeats for each decision point until the online

simulation finishes.

The manager evaluates several characteristics of its

child simulations’ results to select the best alternative.

First, it selects those alternatives that resulted in the

shortest project duration as a prolonged time indicates

missing inventory. Second, it selects those instances

that would result in the lowest added storage capacity.

If several instances remain, the manager selects the al-

ternative cycle that delivers the most components as tie-

breaker.

3.1 Optimization of Resupply Routes

The framework’s primary objective in this article is se-

lecting viable resupply cycles based on the current state

of the installation process. This article defines a re-

supply cycle by the round-trips that the heavy-lift ves-

sel takes, the number of delivered sets by the end of

the cycle, and its duration. Thereby, the efficiency of

a cycle depends on the number of allowed round-trips

N, the geographical location of the ports, i.e., traveling

times, and the vessel’s capacity in terms of deck area

and payload, i.e., the number of components that it can

transport in one round-trip. Figure 4 shows the possi-

ble round-trips for the offshore domain when assuming

symmetric traveling times.

1 2 3

4 5 6

7 8

Figure 4: Possible round-trips for three production ports

(top) and one base port (bottom).

It shows a total of eight possible round-trips when

considering one base port and three production ports

for the towers, blades, and nacelles. Consequently, the

search space for creating a set of alternative resupply
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cycles that allow different numbers of round-trips is

given as ∑N
n=1 8n. For example, assuming the frame-

work wanted to evaluate the best alternative for allow-

ing one to ten round-trips, the search space would al-

ready comprise 1.2 billion possible combinations. As-

suming that evaluating a single alternative would take

about one second, the sheer number of combinations

would result in computational times of approximately

13.888 days. It has to be noted that this example only

includes combinations of visited ports and completely

neglects different loading scenarios at each port. In con-

clusion, the framework requires additional methods to

reduce this search space.

Instead of applying meta-heuristics or other search-

based techniques that still need to search large parts of

the search space, the framework relies on mathematical

optimization to generate optimal alternatives as soon as

the supply network, i.e. the locations of the ports and

the heavy-lift vessel are defined. The framework uses

the model proposed in Rippel et al. (2020) [18] to derive

a set of optimized alternatives for each allowed number

of round-trips.

In general, the creation of a resupply cycle con-

stitutes a combined routing (traveling-salesmen) and

knapsack problem to determine (a) which ports to visit

in each round-trip and (b) which components to load

at each visited port. The problem aims to maximize

the yield while minimizing the traveling-, loading-, and

possibly setup times. The model exploits the small size

of the transport network by enumerating possible routes

for each round-trip (one to eight as shown in Figure 4)).

It then calculates the traveling times for each of these

routes using the well-established haversine formulae,

solving a number of traveling salesman problems. The

actual optimization model is then given as a customized

multi-periodic knapsack formulation to maximize the

number of delivered sets over N round-trips (periods).

The model tracks visited ports in each round-trip as a

binary vector, using a standard binary encoding to map

these visits to the index of the precalculated traveling

times. In addition, the model includes loading and un-

loading and setup times, e.g., for installing or removing

transport frames on the heavy-lift vessel.

The framework applies this model to generate alter-

native cycles for one to N round-trips before the sim-

ulation run starts. While this offline optimization as-

sumes that transport processes are mainly unaffected

by weather conditions, planners could choose a safety

margin to the expected cycle duration or even earlier, to

the corresponding loading and unloading times. Never-

theless, most operations involved in the resupply show

comparably high weather limits, which renders the as-

sumption quite realistic. As a result of applying this

offline optimization, the framework only evaluates N
alternatives at each decision point instead of possibly

millions of combinations.

3.2 Simulation Model

Both the online and nested child simulation runs use

the same underlying model extended from Rippel et al.

(2019) [19] but use different weather data. The online

simulation uses actual, hourly weather records from the

simulated period. Child simulations only have access

to historical data, usually records of years prior to the

simulation period.

The simulation model has been implemented in

AnyLogic 8.7.9 professional. Figure 5 shows a screen-

shot of the simulation model. It contains agents for all

vessels (installation and heavy-lift transport), the instal-

lation site, and the respective base and production ports.

Therefore, ports and the installation site mainly manage

their data, e.g., current storage levels or the number of

installed turbines. In contrast, vessel agents can decide

their following actions, e.g., creating and selecting in-

stallation cycles using weather forecasts. In the context

of this article, the model has been modified for heavy-

lift vessels. Heavy-lift vessels can access all predefined

alternatives instead of only applying a single predefined

resupply cycle. They can inquire the external frame-

work which of these to choose for the next iteration.

In general, the model contains various functions to es-

timate the duration of operations given a weather fore-

cast and the operations’ weather limits as proposed in

the literature [17].

As noted, child simulations only access historical

records as the framework cannot know how the weather

will be in practical applications, even if this article only

simulates historical projects. While the previous article

proposed to use 20 years of historical weather data, i.e.,

mean values from 1979 to 1999 when simulating the

year 2000 for the child simulations, this article proposes

to search for similar years within the available data set

to find better matches. The approach was modeled

as a simplified version of known K-Nearest Neighbor

Searches known in time series prediction (e.g., [10]).

Therefore, the framework selects three months prior to

the simulated project and calculates the duration of in-

stallation operations within this period. Afterward, it
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Figure 5: Simulation model implemented in AnyLogic 8.7.

iterates through the database, selecting each year Y s in

the database and a viable number of historical years

Y N ∈ {0,1,2,5,10,20} and calculates the mean value

and hourly standard deviation. The framework again es-

timates the duration of installation operations using the

Markov-Chain-based approach described in [17] using

these values as input. Finally, it calculates the Pearson-

Correlation Coefficient between these sets and the last

three months to decide for a constellation that matches

the current data as good as possible. Earlier tests show

that this approach represents the expected weather data

better in most cases than just picking the last 20 years

as originally proposed in [15]. In the following, the first

use case still chooses to pick the last 20 years as these

still show the highest correlation. In contrast, the sec-

ond use case chooses a data set comprising five histori-

cal years from 1982 as the best match.

In addition to the aggregated historical data, parent

simulations can provide actual weather forecasts to their

nested child simulations, usually spanning a short pe-

riod of 2-3 weeks. If provided, the simulation model

interpolates between the forecast and its weather data

using the expected uncertainty of the forecasts. This

model uses data taken from the homepage of the Ger-

man Weather Foundation [4], stating that the uncer-

tainty of forecasts starts at 0.0 for the first hour (mea-

surement), increases to approximately 0.25 at one week,

0.65 at two weeks, and rises to 0.95 at three weeks. In-

terpolating these values as u(t) the model calculates the

current weather conditions as function f over the time

in hours t and the two vectors of weather conditions for

historical data dh and forecast data dc: f (t, dc, dh) =
(1−u(t)) ·dc +u(t) ·dh.

4 Experimental Setup

This article applies the cascading simulation framework

to two different use cases. Both use cases model real-

world installation projects in Germany’s Northern Sea

with different characteristics considering the projects’

dimensions, supply network, and applied vessels.

Data for the first use case has been empirically col-

lected during several research projects, resulting in in-

depth knowledge, e.g., about processing times, weather

restrictions, loading scenarios, resupply cycles, or in-

stallation vessels (IV). Beinke et al. (2017) [2] first

published this use case. Accordingly, this experiment

applies the same weather limits. Apart from these

data, the use case relies on averaged characteristics for

the heavy-lift transport vessels (HLV) in terms of their

speed, deck area, and payload, as presented in the lit-

erature [18]. Comparing the results of the optimiza-

tion model introduced earlier with the resupply cycles

used in the real-world scenario shows a close to perfect

match between the results. This match indicates that

the vessel used had similar characteristics [18]. Table

1 summarizes the relevant parameters for this first use

case.

Parameter Tower Blade Nacelle

Project Start April 1st 2000

Base Port Eemshaven

Installation Site Northern Sea

Number of Turbines 50

Number of IVs 1

HLV: Deck Area / Pay-

load

2646m2 / 8900 t

HLV: Avg. Speed 9.5 knots

Production Port Cux-

haven

Bremer-

haven

Bremer-

haven

Loading / Unloading /

Setup Time

2 h / 1.2

h / 0 h

8 h /4.8

h / 0 h

10 h / 6

h / 0 h

Weight 600 t 240 t 500 t

Req. Space 650 m2 300 m2 263 m2

Table 1: Parameters of the first use case.

The second use case represents the installation for

the wind farm "Hohe See" in Germany’s Northern Sea.

The use case relies on publicly available data about used

vessels, the supply network, or the wind farm location,

e.g., [6]. While keeping the same weather limits, pro-
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cess durations, and heavy-lift vessel characteristics, this

use case features a much larger supply network, more

turbines to install, and a second installation vessel as

shown in Table 2.

Parameter Tower Blade Nacelle

Project Start April 1st 2019

Base Port Esbjerg

Installation Site Wind Farm "Hohe See"

Number of Turbines 71

Number of IVs Blue Tern, Brave Tern

Production Port Rotter-

damm

Aalborg Cux-

haven

Table 2:Modified parameters of the second use case.

Both use cases use the same data set for weather

data, containing hourly measurements from 1956 to

2019 within a few kilometers of both installation sites.

As noted before, the nested child simulations use aggre-

gated weather data for 1979-1999 (first use case) and

1977-1982 (second use case).

The simulation tracks the inventory levels of the on-

line simulation to evaluate the efficiency of the cascad-

ing framework compared to an optimized fixed cycle.

Accordingly, the first use case applies a cycle consist-

ing of four round-trips that deliver eight sets in 312

hours. This cycle has also been applied in the real-world

project and has been proven to be the most efficient cy-

cle possible [18]. As the applied cycle is unknown for

the second use case, the experiment first applied the de-

scribed optimization to determine the most efficient cy-

cle. In this use case, again, a resupply cycle using four

round-trips, delivering eight sets over 408 hours, pro-

vides the lowest time per set.

The experiment assumes an infinite storage capac-

ity but tracks how much inventory was used during the

simulation to determine the required capacity. The ex-

periment varies the initial inventory level between 0 and

20 in steps of two for the first use case and between 0

and 50 in steps of 5 for the second use case to deter-

mine the lowest possible initial inventory for the fixed

cycle and cascading framework. Finally, it tracks the

actual inventory levels throughout the simulation to en-

able comparisons in the behavior of both approaches.

5 Results and Discussion

Figure 6 shows the results for the first use case. The

top graph shows the project duration for different initial

inventory levels. The results show that the cascading

concept achieves an uninterrupted installation process

starting at an initial inventory level of ten sets. In con-

trast, the fixed cycle requires at least twelve sets to avoid

delays due to missing inventory. The graph in the mid-

dle shows the observed maximum inventory. Both ap-

proaches require a capacity equal to this level, starting

from an initial inventory of eight sets. Finally, the low-

est graph shows the current inventory level over time.

The graph shows no relevant differences, resulting in

similar average inventory levels.
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Figure 6: Results of the first use case.

Figure 7 shows the same graphs for the second use

case. Considering the project duration, the second use

case shows the same characteristic as the first use case:

the cascading approach achieves an uninterrupted in-

stallation at an initial inventory level of 30 sets in-

stead of 35 sets for the fixed cycle. Similarly, both

approaches’ required capacity is equal (second graph).

In contrast to the first use case, the last graph shows
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interesting behavior. The cascading approach quickly

reduces the initial inventory level, maintaining a lower

average inventory level until the end of the project.
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Figure 7: Results of the second use case.

6 Conclusion and Future Work
This article presents a framework to combine cascad-

ing simulation with offline mathematical optimization

to choose viable resupply cycles for offshore instal-

lation projects based on the current state of the pro-

cess, weather forecasts, and expected weather condi-

tions. Compared to purely heuristic or search-based ap-

proaches, this combination limits the search space dras-

tically, rendering it a viable alternative in practical ap-

plications. The same accounts for purely mathematical

approaches. Combining the scheduling of vessels with

the routing and knapsack problems involved with the

resupply would probably result in a problem with vast

amounts of constraints, probably unsolvable in a realis-

tic context.

The results show that the approach reduces the re-

quired initial inventory level compared to optimized

fixed resupply cycles. As the required capacity in-

creases linearly with the initial level, the framework

can provide a tool to reduce the strain on port-side re-

sources. Moreover, the second use case shows that the

framework can, in some cases, result in a heavy reduc-

tion of the average inventory level at the beginning of

a project. This behavior can be exploited to free up re-

served capacity. The advantage of the cascading con-

cept also shows in its transparency. At each decision

point, the framework offers its current decision. In the

second use case, the framework decides for a long re-

supply cycle initially, resulting in the drop of the av-

erage inventory level. Moreover, planners could also

evaluate the respective nested child simulation to pre-

dict the remaining project’s behavior.

Future work will further investigate this effect and

determine which constellations result in such behavior.

Moreover, future work will investigate other applica-

tions for the cascading framework in the offshore area

and other simulation-based optimizations. The current

implementation allows easy integration of the cascad-

ing framework to various models implemented in Any-

Logic by providing suitable interfaces to register the

manager class and the means to provide it with decision

alternatives.
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Abstract. The increasing popularity of e-commerce re-
quires efficient solutions for the provision of last mile lo-
gistics. There are different approaches for delivering par-
cels, e.g., home delivery, service points, or parcel lockers, 
which have different advantages and disadvantages for 
customers and logistics providers in terms of flexibility, ac-
cessibility, and operating costs. We have studied a novel 
transportation solution where electric vehicles dynami-
cally set up smart cargo boxes, from which customers can 
fetch their delivery at any time of the day. This provides 
customers with a more flexible access to their packages 
and allows the service provider to deliver the parcels more 
efficiently. In this article, we present the results of a feasi-
bility study conducted in Västra Hamnen, Malmö (Swe-
den). The developed simulation model shows that smart 
boxes not only are a viable approach for efficient last mile 
deliveries, but also result in considerably smaller travel dis-
tances compared to conventional package delivery system. 

Introduction 
Even before the beginning of the Covid-19 pandemic, 
business to consumer (B2C) e-commerce has experi-
enced a steady growth. However, due to interventions for 
containing the pandemic such as movement restrictions 
and lockdowns as well as recommendations against vis-
iting physical stores or even their closure, the importance 
and popularity of online shopping increased further 
(Elrhim & Elsayed 2020). A major challenge that arises 
from the growing trend towards online shopping is the 
effective realization of B2C last mile delivery, i.e., the 
delivery of the parcel from a regional depot to the cus-
tomer (Mangiaracina et al. 2019). 

There exists a great number of logistics service pro-
viders that pursue different last mile delivery approaches. 
Common last-mile solutions for B2C are to deliver the 
parcel to (i) the home address, (ii) service points where 
they are picked up by the customers, or (iii) stationary 
parcel lockers that are located at supermarkets or other 
frequented places, where customers can pick up their par-
cels. As outlined by Allen et al. (2007), these delivery 
alternatives provide customers but also service providers 
with different advantages and disadvantages regarding 
flexibility, accessibility, and effort of the pick-up pro-
cess. Customers, for instance, experience shorter re-
trieval times and are not limited to opening hours when 
using parcel lockers compared to service point deliveries. 
However, compared to attended home deliveries, parcel 
lockers and service points do not require the customer to 
be present upon delivery and, thus, increase the custom-
ers’ flexibility in terms of the delivery time window. Yet, 
pick-up points are limited in their opening hours and re-
quire each customer to travel there, which they might 
consider to be inconvenient. 

From a logistics provider’s perspective, these deliv-
ery options vary in efficiency. Compared to pick-up ser-
vice points, home delivery results in increased delivery 
costs, a higher number of failed deliveries, and a signifi-
cantly greater driving distance for delivery vehicles, 
which also might affect traffic congestion and exhaust 
emissions. Moreover, the delivery option with parcel 
lockers is more time-consuming for the driver as he or 
she needs to fill the lockers with new deliveries. For both 
parcel lockers and service point deliveries, it can be as-
sumed that the cumulated customer travel distance is sig-
nificantly higher in relation to the travel distance of the 
service provider. It is challenging to take all these, poten-
tially conflicting, requirements into account and to find a 
balance between the requirements of the customer and lo-
gistics providers. 
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T N 
To address this issue, the Swedish start-up DiPP-R 

(www.dipp-r.com) develops a transportation solution to 
improve the efficiency of last mile delivery of e-com-
merce parcels. The idea is that electric vehicles dynami-
cally set up smart cargo boxes at different locations in the 
city. These boxes can hold between 50 and 100 packages 
and are dynamically placed at, for instance, parking ar-
eas. This enables the customers to pick-up their deliveries 
at any time during the day. After all parcels were picked 
up by the customers or after a certain time, the boxes are 
collected by the vehicles, refilled at the depot, and placed 
at other locations. The aim is to reduce the handling of 
parcels outside the depot and to decrease the distance re-
cipients must travel to fetch their parcels. This results in 
increased convenience and shorter total travel distance, 
ultimately reducing traffic congestion and environmental 
impact. 

This article presents the results of a feasibility study 
that was conducted by Malmö University, the city of 
Malmö, and DiPP-R. As part of this study, a simulation 
model was developed to investigate the effects of this 
new delivery concept and how it can be realized. The 
simulation model allows for analysing the efficiency of 
different service designs in Västra Hamnen, a district in 
northern Malmö (Sweden). The simulation model also 
enables the comparison of this new approach with tradi-
tional delivery concepts, such as home delivery and cen-
tral service points. 
In summary, the simulation model can be used to answer 
research questions such as 
• How does the new concept perform compared to  

existing delivery services in terms of, for instance, 
travelled distance, accessibility for customers,  
environmental and traffic impact?  

• How shall smart cargo boxes be configured and how 
many compartments are required per box? 

• How many setup locations are required to efficiently 
serve a particular area and where should they be  
located? 

• Which pick-up and drop-off strategy is most efficient 
in terms of travel distance? 

• How do variations in demand affect the service  
quality? 

The paper is structured as follows: In Section 1, we pro-
vide a description of related work on last mile logistics 
and its simulation. We then describe the simulation 
model we developed, followed by a specification of the 
experiments and the results. After a discussion of the re-
sults, we provide conclusions and discuss future work. 

1 State-of-the-Art 
The use of simulation for analysing and comparing logis-
tics processes is well established and studied (Manuj 
2009). In transportation logistics, simulation is used to 
analyse, for instance, how transport tasks can be allocated 
to vehicles (Davidsson et al. 2005). According to Olsson 
et al. (2019), modelling and simulation is the leading 
methodology used in the emerging research area of last 
mile logistics. It is applied to investigate, e.g., the effects 
of different means of delivery such as electric vehicles 
and cargo-bikes but also the feasibility of crowdsourcing. 
This is, as simulation allows for creating digital copies 
(digital twins) of real-world systems, that can be used to 
efficiently investigate the system’s behaviour under dif-
ferent circumstances, without influencing or jeopardizing 
the real-world system. 

Grando & Gosso (2005) refer to the issue of identify-
ing the optimal delivery solution as “Last Mile Logistics 
Dilemma” and present a reference model for comparing 
home delivery with pick-up points. To overcome this di-
lemma, Perboli et al. (2018) propose a multimodal simu-
lation optimization framework for urban freight transpor-
tation of e-commerce deliveries, which allows for analys-
ing different delivery modes in realistic scenarios. Be-
sides such frameworks, there exists other studies for spe-
cific scenarios in last mile logistics. This includes, for in-
stance, the use of robots for autonomous last mile deliv-
eries, e.g., (Poeting et al. 2019), or for crowdsourced de-
livery, e.g., (Guo et al. 2019), where local non-profes-
sional couriers deliver the parcels to the customers’ 
homes. 

The use of cargo boxes has been mostly studied for 
scenarios with stationary boxes that are equipped to the 
customer’s house or set up at fixes publicly accessible lo-
cations. To optimize the last mile in electronic grocery 
shopping, Punakivi et al. (2001) simulate the use of de-
livery and reception boxes for unattended delivery of gro-
ceries. Yetis & Karakose (2018) propose the use of smart 
cargo cabinets that are located within buildings and fed 
by unmanned aerial vehicles (drones). For a Polish city, 
a study has been conducted by Iwan et al. (2016). The 
results show that a reduction of the environmental impact 
of last mile delivery can only be achieved by alternative 
delivery concepts such as parcel lockers. A similar study 
has also been conducted in the Netherlands, which inves-
tigated the potential of cost reductions when shifting 
from home delivery to parcel lockers (Van Duin et al. 
2020). 
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To our knowledge, there exists no simulation studies 

on smart cargo boxes that are dynamically placed at dif-
ferent locations in the city with the aim of optimizing de-
livery processes for both customers and logistic service 
provides. 

2 Modelling Last Mile Delivery 
Options 

We implemented an agent-based model (ABM) to inves-
tigate the effects of different last mile delivery options. 
The delivery vehicle, customers, deliveries, smart cargo 
boxes, potential locations of the boxes, and the depot are 
implemented as agents. Each day, a number of deliveries 
arrives to the depot each of which is designated for a spe-
cific customer in the simulated area. According to the 
customers’ home addresses, the deliveries will be allo-
cated to boxes such that the customers’ travel distance for 
picking up their parcels is minimized. This includes the 
clustering of the deliveries for the allocation to the boxes 
as well as the identification of optimal setup locations for 
each box. A vehicle will then transport the boxes, one at 
a time, to their designated location. In case there is al-
ready a box standing at this location whose minimum 
setup time (e.g., after 24 hours) has been reached, it will 
be replaced, and the previous box is returned to the depot. 
Packages remaining in the returned box will then be allo-
cated to new boxes in the same manner as newly arrived 
packages. The vehicle visits the box locations in an order 
prioritizing empty boxes and those that have exceeded 
their minimal setup time. Boxes that are placed at a loca-
tion may not be completely filled with packages, how-
ever, the vehicle will never deliver empty boxes and will 
skip locations to which no packages are to be delivered. 
During hours with high volume of traffic (e.g., 6 a.m. – 
9 a.m. and 3 p.m. – 6 p.m.) the vehicle will not leave the 
depot to reduce traffic congestion. 

Each customer has a home address, from where he or 
she will pick up the parcel. Once a box with a parcel ar-
rives at a pick-up location, there will be a random delay 
representing that the customers are occupied with other 
activities and that they pick up their deliveries at a later 
point in time. If the box with the package has not been 
returned to the depot by then, the customer walks to the 
location of the box, takes its package and walks back 
home. Otherwise, the customer will be informed when 
the delivery can be collected from another box.  

 

In case the distance to the box is greater than a given 
threshold, the recipient will choose to take the car instead 
of walking. 

Modelling of customer demand is challenging and re-
quires data on where customers live as well as on their 
habits. For this study, each customer and delivery need to 
be assigned to a specific building to adequately simulate 
driving and walking distances to distribute and pick up 
parcels. Hence, address data is needed on where people 
live. This data is usually not openly available such that 
other data sources must be used to generate realistic arti-
ficial data on customer demand. OpenStreetMap (OSM; 
openstreetmap.org) data, for instance, can be used to ge-
ographically distribute customers in a realistic way. From 
OSM, positions of buildings can be extracted as well as 
their size and utilization. This allows us to identify the 
potential home addresses of customers and to estimate 
the likely number of residents. We do this by distributing 
the known number of inhabitants of the simulated area to 
the buildings we identified in OSM. Here, we use the 
floor area of the houses to estimate the number of resi-
dents by calculating the average floor area per resident. 
Due to a lack of data, the modelled population is homog-
enous in terms of their behaviour and habits, e.g., the 
threshold when they will use a car to fetch their delivery. 

The model allows for comparing the new delivery 
concept to two traditional package delivery systems: de-
liveries to service points and home deliveries. For service 
point deliveries, different pick-up locations are defined, 
where the service points are located. Each time a cus-
tomer fetches a package from a box, the walking distance 
from their home to one of the delivery locations and back 
is simulated as well. For home delivery, every time new 
packages are delivered to the depot, a route is iteratively 
planned such that packages are delivered to the recipient 
closest to the last one. This does not return the minimum 
distance required to deliver all packages but overesti-
mates the delivery distance. Yet, we do not consider extra 
driving distances potentially caused by time windows for 
home delivery. Moreover, we assume that only one vehi-
cle is in charge of all home deliveries. 
For analysing different scenarios, the model provides the 
following parameters: 
• The number of packages delivered to the depot each 

day. Each arriving package has an individual defined 
as its recipient.  

• The minimum set-up time of boxes to stay at a 
location before it can be picked up or replaced by  
the vehicle.  
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• The package capacity of the boxes. Packages that do 

not fit in a box will be delivered with the next box to 
the same location or a suitable location close by. 

• The rate at which customers collect their packages 
as the lambda parameter of the exponential function 
for determining waiting times of customers. 

• The maximum walking distance of recipients before 
taking the car for fetching a delivery. We assume all 
individuals have access to a car. 

• The ratio of individuals fetching their packages 
combined with other activities. If individuals fetch 
their package together with other activities, e.g., buy-
ing groceries, only the additional distance needed to 
fetch the package is considered. The customer will 
move from its home to the grocery store, to the box, 
and back home. In case the grocery store contains a 
delivery point, the additional distance is zero 

The following outputs are provided for each run of the 
simulation model: 
• The total distance the delivery vehicle has travelled. 
• The total time the vehicle is being active. 
• The total distance of customers to pick up their pack-

ages and to return home. 
• The distance of customers travelled by car in case 

the distance to the box is above the car threshold. Driv-
ing distance can be longar than walking distance.  

• The number of deliveries that have been picked up 
by the recipients. 

• The number of packages that have not been picked 
up by the customers and thus were returned to the 
depot for a new delivery with another box. 

• For service point deliveries:  
 The total distance of 

customers to fetch their 
   packages and return 
home. 

 The total distance of 
customers travelled  
   by car. 

• For home delivery:  
 The approximated to-

tal distance travelled 
  by the home delivery 
vehicle. 

 The approximated to-
tal time all deliveries  
   will take. 

3 Case Study: Smart Cargo 
Boxes in Västra Hamnen 

The model was implemented using the AnyLogic simu-
lation framework (www.anylogic.com). For this feasibil-
ity study, we have chosen the neighbourhood of Västra 
Hamnen in Malmö (Sweden) as the setting for our exper-
iments. The potential locations of the boxes as well as for 
the depot can be chosen manually. 

To generate more realistic results, we have chosen the 
location of the depot to be close to the depots of other 
existing logistics providers and identified suitable loca-
tions, e.g., parking areas, for setting up the boxes. For the 
simulation of both service point deliveries and grocery 
stores, two existing service point locations were chosen. 
AnyLogic includes built-in geographic information sys-
tem (GIS) support with real-world road networks, which 
is used to create routings for vehicles and individuals. 
The user interface of the simulation is shown in Figure 1. 

For the generation of customer address data and cus-
tomer demand, we have used OSM data of Västra Ham-
nen in Malmö. According to the data, there are 298 build-
ings in this area. Buildings with a floor area over 2.000 m2 
were assumed to be industrials buildings and not consid-
ered as residence of customers. Buildings between 200 
and 2.000 m2 are assumed to be apartment buildings and 
below 200 m2 as single-family house. In total, Västra 
Hamnen has 9 739 inhabitants, which were distributed to 
the existing buildings according to their floor area, result-
ing in 9 155 customers living in apartment buildings and 
584 living in single-family houses. Each of the 9 739 cus-
tomers was assigned an address according to this distri-
bution. 

 
Figure 1: The user interface of the simulation model in AnyLogic. 
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4 Results of the Simulation 

Study  
For the study, the simulation model was run using differ-
ent combinations of input parameter values. The simula-
tion starts at 8 a.m. and we simulate an entire week. The 
presented results were generated using 8 box locations, 
9739 customers, and a single distribution vehicle. With 
respect to the comparability of the results, all simulations 
used a fixed random seed. 

Figure 3 shows the distance travelled by vehicles for 
different delivery options and scenarios, i.e., thresholds 
when customers use their car to get their packages as well 
as packages per day. When customers chose not to use 
their car for picking up parcels if the distance is less than 
1 km, the mobile smart boxes system results in consider-
ably shorter driving distances compared to the delivery 
point system. Also, the distance is similar 
to the distance the home delivery vehicle 
has to drive, assuming it has a capacity of 
100 parcels.  

For the effectiveness of the service, it 
is not only relevant how many boxes are 
used but also where they are located. The 
placement of boxes and its effects on the 
distance customers must walk can also be 

explored using the model. For instance, in the two set-
ups shown in Figure 2, the cumulated walking distance 
differs by 3.4%. Hence, the model can be used by deci-
sion makers to identify most suitable locations 

The model also allows for varying the number of 
boxes and to investigate the effect this has on the service 
provision. We simulated the parallel set-up of 4, 6, 8, and 
10 boxes with the locations of the boxes being deter-
mined using k-means clustering (see Figure 4). The re-
sults show a decreasing customers’ travel distance and an 
increasing distance driven by the delivery vehicle, when 
the number of parallelly used cargo boxes increases. As 
shown in Table 1, increasing the number of boxes from 4 
to 6 results in a 13.9% decrease of the customers’ walk-
ing distance and 23.2% decrease of the distance driven 
by car (in total -18.8%) whereas the travel distance of the 
delivery vehicle increases by 48.8%.  

 
Figure 3: The distance (in km) travelled by the delivery vehicle and by customers using cars at thresholds of 0km and 1km 

for four scenarios: 1) Boxes, with a capacity of 50 packages waiting for 12 hours at stops;  
2) Boxes, with a capacity of 100 packages waiting for 36 hours at stops;  
3) Service point delivery; 4) Home delivery. The depot received 200 resp. 600 packages per day. 

 

 
Figure 4: Different number and placement of set-up locations for smart boxes. 

 
Figure 2: Total customers’ walking distance for two different placements 

 of boxes. 
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Number  
of cargo 
boxes 

Distance 
walked by 
customers 

(km) 

Distance driven 
by customers 

(km) 

Distance  
delivery  

vehicle (km) 

4 1717 1974 180 

6 1478 1516 268 

8 1453 1319 345 

10 1346 1083 451 

Table 1: Traveling distance of customers and delivery  
vehicle for different number of stops  
assuming that customers will walk in 
case the distance is less than 1km.  

When increasing the number of boxes from 6 to 8, the 
total decrease in customers’ travel distance is only 7.5% 
whereas the distance of the delivery vehicle almost dou-
bles (+91.7%) 

It can be assumed that some customers will combine 
the collection of their delivery with other activities such 
as grocery shopping, as service points often are located 
at grocery stores.  

Figure 5 shows how the percent of individuals fetch-
ing their package combined with another activity affects 
the additional distance travelled by private car for both 
mobile smart boxes and delivery points. More people 
combining fetching their package with grocery shopping 
leads to smaller additional distances travelled. More in-
terestingly, the smart boxes system is shown to lead to 
smaller distances travelled than the delivery point system 
for almost all scenarios. 

An estimate of the cumulative time it takes to distrib-
ute the mobile smart boxes and to make all home deliv-
eries is shown in Figure 6. For home delivery, each de-
livery is assumed to take one minute per address, the ve-
hicle’s movement speed is 15 km/h, and the capacity is 
100 parcels.  

The figure shows that the time the smart box delivery 
vehicle is active correlates with the frequency at which 
boxes are delivered and returned to the depot. Yet, it is 
largely unaffected by the number of packages being de-
livered. This is not true for the home delivery vehicle. 

 

 

Figure 5: The distance (in km) travelled by customers by private car for different probability of combining the fetching of 
parcels with other trips, e.g., shopping. 

 
Figure 6: The cumulative time the delivery takes for smart boxes with a capacity of 50 packages being replaced after 

12 hours, smart boxes with a capacity of 100 packages being replaced after 36 hours, and home delivery. 
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5 Conclusions 
In this article, we have presented an agent-based simula-
tion model for comparing a delivery solution with mobile 
smart cargo boxes to existing systems for last-mile deliv-
ery. The simulation explores the effects of different smart 
box service designs and results show that smart boxes are 
not only feasible as a delivery solution, but significantly 
decrease the distance customers must travel to fetch their 
packages and the total distance driven by vehicles com-
pared to service point deliveries. For a car threshold of 
1 km, the total vehicle distance is similar to the one of 
home delivery. 

Yet, existing delivery systems have limitations that 
have not been included in this study. For instance, home 
delivery might require the recipient to be at home and 
service points usually have opening hours. With smart 
boxes solution, however, customers can fetch their pack-
ages whenever they desire during the day, allowing for 
increased flexibility. Moreover, the service provider can 
set up and collect boxes all day through, which increases 
the utilization of the vehicles. 

There is a trade-off concerning the time boxes stay 
out before being returned to the depot. A shorter setup 
time reduces the time packages stay at the depot before 
being distributed. Recipients, however, have a smaller 
time window for fetching their packages. This, as well as 
the fact that not all individuals fetch their packages right 
away, increases the load at the depot and requires the use 
of more boxes. Also, reducing the time packages are 
available for pickup is less convenient to customers. 

Examples of simplifications made in the model are 
the homogeneity of individuals and their habits, the as-
sumption of a static threshold for fetching a parcel by car, 
and the exclusion of workplaces and other venues than 
grocery stores and service points. There is also no con-
sideration of exhaust emissions of vehicles, which might 
be relevant for cities with low-emission zones. Another 
assumption is that only one delivery vehicle is used for 
all home deliveries. An extension of the model requires, 
e.g., data on the capacity of home delivery vehicles and 
the time to deliver packages 

Besides the design of the service, local regulations 
and policies might affect the feasibility and viability of 
deliveries using mobile smart cargo boxes. This includes, 
for instance, parking regulations that might limit poten-
tial locations for setting up boxes and how long they can 
stand at a location.  

 

Moreover, it is uncertain how different configurations 
of the service, e.g., the minimum setup time, affect cus-
tomer acceptance and satisfaction. Yet, the proposed sim-
ulation model can be used to investigate different scenar-
ios and to identify potential challenges and opportunities. 

With respect to future trends, it is planned to use elec-
tric vehicles for the distribution of the boxes. To this end, 
the effect the battery capacity of the vehicles has on the 
service needs to be investigated as well as the approaches 
for charging the vehicles. It can also be assumed that 
many customers will combine the pick-up of their parcels 
with, for instance, their work trip. This might affect the 
optimal placement of the boxes as the location closest to 
the home might not be most convenient. 
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Abstract. Integrating machine learning methods into the 
scheduling process to adjust priority rules dynamically 
can improve the performance of manufacturing systems. 
In this paper, three methods for adjusting the k-values of 
the ATCS sequencing rule are analyzed: neural networks, 
decision trees and reinforcement learning. They are eval-
uated in a static and a dynamic scenario. The required da-
taset was synthetically generated using a discrete event 
simulation of a flow shop environment, where product 
mix and system utilization were varied systematically. 
Across all scenarios, it is shown that all three methods can 
improve the performance. On par, RL and NN can reduce 
the mean tardiness by up to 15% and compensate for un-
planned product mix changes. 

Introduction 
Finding a good sequence of operations on a machine can 
be difficult under changing conditions, such as machine 
failure. Since the use of centralized and static solution 
methods is not suitable in complex and uncertain scenar-
ios, decentralized sequencing rules are a viable option. 
These rules use locally available information for fast de-
cision making. However, no rule exists that outperforms 
all others under varying system performance. 

For this reason, a hyperheuristic is developed to dy-
namically select and adjust weighting values of a compo-
site sequencing rule, selecting the next job to be pro-
cessed based on the system state. Based on a variety of 
training scenarios considering several dynamic influ-
ences, such as stochastically distributed arrival times or 

changing proportions of product families in the product 
mix, the benefits of dynamically adjusting the k-factors 
of the rule is presented.  

To estimate the performance of the system based on 
the current state, different machine learning models have 
provided very good results depending on the selection of 
the weights of the composite rule (Heger 2014; Mouelhi-
Chibani and Pierreval 2010; Shiue et al. 2018). When us-
ing these methods, however, there is not only the ques-
tion of the amount of training points, but also the aspect 
of transferability of the acquired knowledge in new sce-
narios and the suitability, generalizability and traceability 
of the methods used (Priore et al. 2006; Priore et al. 2018; 
Usuga Cadavid et al. 2020).  

The knowledge and understanding of actions and de-
cisions taken during the process is crucial and is increas-
ingly preferred as opposed to simple prediction and black 
box optimization (Nunes and Jannach 2017; Rehse et al. 
2019). At this point, the usage of hyperheuristics for the 
selection and adjustment of different sequencing rules in 
combination with comprehensible learning methods (e.g. 
decision trees) can prove useful. This contribution elabo-
rates on the usage of three different methods to dynami-
cally adjust the behavior with regards to performance and 
comprehensibility.  

1 State-of-the-Art 
Due to their ease of comprehension and very short com-
putation time, the use of priority rules for sequencing, i.e. 
selecting the next job to be processed by the machines, is 
very popular in the industry. It should be noted that more 
than 100 rules are known, which perform differently de-
pending on the scenario (Panwalkar and Iskander 1977). 
Over the years, priority rules which look at multiple job 
attributes simultaneously have been developed to im-
prove system performance.  
 

SNE 32(3), 2022, 169-175,  DOI: 10.11128/sne.32.tn.10617 
Selected ASIM SPL 2021 Postconf. Publication: 2022-01-27; 
Received English version: 2022-05-29; Accepted: 2022-06-03  
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna 
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org 



Voß et al.    Reinforcement Learning for Dynamic Adjustment of Composite Sequencing Rules  

170      SNE 32(3) – 9/2022 

T N 
For example, the „Apparent Tardiness Cost“ rule, 

which, in addition to the weighted process time, also in-
cludes the planned completion time and a weighting 
value ( ) (Vepsalainen and Morton 1987). With regard 
to setup times, the rule was then extended to include a 
setup time term and has been since described as "Appar-
ent Tardiness Cost with Setups" (ATCS). The additional 
term denotes the ratio between sequence-dependent setup 
time and average setup time multiplied by the second 
weighting value ( ). The rule is used in the form shown 
in equation (1) for this study. The combination of three 
attributes and the use of two weighting values make it 
possible to achieve good performance across a wide 
range of scenarios when properly tuned (Lee et al. 2002). 
 = ( ) ,  (1) 

Knowing that the system performance strongly depends 
on the correct selection of the k-values to match the sys-
tem workload, they are required to be dynamically ad-
justed to the situation on the shop floor. Consequently, 
the dynamic adaptation is a hyperheuristic. However, to 
build the knowledge base about the relationship between 
the k-values and the resulting performance, all possible 
combinations of k-values, product mix and system state 
would have to be known.  

Because of the complexity in real systems, not all 
possible combinations of influencing factors can be sim-
ulated. For that reason, a defined combinations of system 
states is simulated and the unknown situations are esti-
mated by a regression procedure 

In the current state of the literature, the use of neural 
networks (NN) represents the standard to forecast system 
behavior. Specifically, the usage of NN for the prediction 
of system performance was considered in detail with re-
gard to the dependence on the k-values and the system 
status in multiples works (Heger 2014; Heger et al. 2016; 
Mönch et al. 2006; Mouelhi-Chibani and Pierreval 2010). 
However, despite good results, it should be noted that 
NNs are basically used as a black box and do not allow 
us to infer any information about the influence of certain 
factors. To this end, the use of NNs as a baseline was pre-
viously compared with the use of decision trees and rein-
forcement learning (Rai, 2020). 

Decision trees have recently received significant at-
tention in the context of Explainable AI (Puiutta and 
Veith 2020; Rai 2020).  

Unlike complex methods, such as deep NNs, which 
produce non-interpretable black-box models, decision 
trees are rule-based methods that provide the user with an 
intuitive representation of rules and processes. At each 
node of a decision tree, a particular objective function is 
tested. The result provides the path to the new node. The 
structure repeats until a particular condition is met. Hu-
man comprehensible rules can be derived from paths 
through the decision tree. 

Due to their structure, decision trees can be used for 
both classification and regression tasks. Thus, being gen-
erally suitable for dynamic selection of priority rules, 
they are prone to perform worse in unknown scenarios 
(Shahzad and Mebarki 2016). Other tree-based methods, 
such as Random Forest and XGBoost, based on a combi-
nation of decision trees and have forfeited a certain de-
gree of interpretability in order to achieve better accuracy 
and generalization. Nevertheless, they are increasingly 
equipped with further functionalities to improve inter-
pretability (Lundberg et al. 2020) 

The use of reinforcement learning has already 
achieved good results as a hyperheuristic in the dynamic 
selection of sequencing rules. Studies show that the in-
herent advantages of reinforcement learning, as opposed 
to supervised learning methods, are in the direct interac-
tion with the system. The agent learns the correct behav-
iors based on the observed behavior and the feedback re-
ceived. Specifically, the use case entailing the selection 
of priority rules for all machines in the system (Heger and 
Voss 2020, 2021) has shown good results. The authors 
show that based on the observed system workload and 
queues, performance can be improved by dynamically se-
lecting sequencing rules. Similarly, other authors show 
that dynamic adaptation of machine-specific rules ena-
bles significant performance improvements across differ-
ent scenarios (Shiue et al. 2018, 2020). 

This paper examines the extent to which the three 
aforementioned methods can be useful in supporting the 
selection of appropriate k-values for the ATCS sequenc-
ing rule. Specifically, the extent to which the use of com-
prehensible actions leads to a reduction in performance is 
to be examined. The interaction effects between perfor-
mance and explainability is examined in more detail in 
the context of the presented scenario. In addition, using 
the trained hyperheuristics, it is to be tested whether they 
are still able to select and dynamically adjust the k-values 
according to the system state in an unknown scenario, 
thereby achieving a more robust performance 

. 
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2 Simulation and Scenario 
The study is used and conducted in the context of a man-
ufacturing system with sequence-dependent setup times. 
Unplanned and unknown changes, such as product mix 
changes and workload fluctuations, are added to be able 
to look at a behavior of the different methods in unknown 
scenarios. The scenario is described in detail below: 

System 
Machines: 10 
Machine Groups: 5  
Structure: Flow shop 

Job  
Parameter 

Product types: 4  
Distribution of product types:  
       based on Product Mix 
Operations per Order: 10 
Distribution of Interarrival Times:  
     Poisson Process times: 1 – 99 
Distribution of Process times:  
    uniform 
Due Date: TWK Method 

Simulation  Warm Up: 2500 Jobs 
Duration of Simulation: 12500 Jobs 

KPIs Average Mean Tardiness 

Table 1: Detailed description of the flow shop scenario. 

The particular focus in this contribution is to consider the 
impact of the sequence-dependent setup times, which are 
shown below. Depending on the product mix, the propor-
tions of the four product types are different, which leads 
to different ratios of setup time. Thus, it can be assumed 
that a product mix with the first three product families 
requires significantly less setup time than a product mix 
containing all four product families. Here, the matrix in 
(2) can be read as follows: the setup time from family 1 
to family 2 is 5 minutes; the setup time from family 1 to 
family 4 is 25 minutes. With an average processing time 
of 50 minutes, the setup time ratio can have a massive 
impact on the performance of the system. 0 55 0 10 2510 255 55 5 0 2510 0  (2) 

To measure performance, the av-
erage mean tardiness and the aver-
age lead time are documented. The 
average tardiness results from the 
sum of all deviations of planned 
completion time and the actual 
completion divided by the number 
of observations.  

It should be noted that orders completed too early are 
assessed with a delay of zero. The due date, considered 
as the planned completion time, is calculated from the 
sum of the start time and the average planned processing 
time for all steps multiplied by a due date factor. The due 
date factor is selected so that a certain setup-, maintenance-
and transport-time between machines is acceptable. 

For the creation of regression models, training data is 
generated in an extensive parameter study using the dis-
crete-event simulation model. The use of the simulation 
makes it possible to determine the length and width of the 
data set itself. The generated data forms the basis for the 
knowledge-based approaches to dynamic adjustment de-
scribed later. In this case, the simulation model is availa-
ble as a training environment for reinforcement learning 
as well. 

Figure 1 describes the multiple steps of the proce-
dure; starting at the bottom center is the simulation 
model. Through the parameter variation experiment it is 
possible to examine the behavior of the performance de-
pending on different system state combinations, thus 
making it possible to create training data for the different 
regression models. 

 
Figure 2: The regression model is trained offline based  

on the simulation and utilized online after 
 training as a decision support system. 

Figure 2 shows a schematic of the dynamic adaptation 
procedure during the online application. It considers the 
performance of the system over time and under changing 
states as well as the last selection of k-values. Depending 
on the selected performance indicator, the goal is to min-
imize or maximize this performance value; in this contri-
bution, the minimization of the average tardiness is con-
sidered.  

Figure 1: Generalized behavior of the adjustment of k-value pairs with RL. 
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At defined points in time, regardless of the particular 

method being used, decision support utilizes the regres-
sion model to make a statement about the most appropri-
ate k-values for the situation to improve performance. 
The values are used for a defined period of time and re-
evaluated afterwards 

It is necessary to evaluate whether and to what degree 
the variation occurs due to the inherent stochastic uncer-
tainties of the simulation model. The simulation study 
can further evaluate how the frequency of adjustment af-
fects performance. 

A parameter analysis is performed in this context to 
find out which observations have significant influence, 
and which do not. Data pre-processing such as standard-
ization, one-hot encoding, and a combination of these are 
performed independently of the method used, but due to 
the simulation focus, their consequences are not evalu-
ated in detail. 

3 Evaluation 
For the training data set, a parameter study was per-
formed recording all possible combinations of -values 
from 1 to 10 and -values from 0.01 to 1.01 under 7 dif-
ferent workloads from 85 % to 95 % as well as 12 differ-
ent product mixes with different setup proportions.  

For each of the 9240 individual parameter combina-
tions, 5 replications were performed. The data set used 
thus comprises 46200 samples. The observations from 
the system were the average mean tardiness, average lead 
time, product mix, and average machine utilization. In 
this contribution, the k-values, machine utilization, and 
performance indicators are considered as continuous var-
iables, while the product mix is considered as a categori-
cal variable. 

In the raw data, it can be seen that product mixes per-
form differently at the same utilization rate and using the 
same static k-values, depending on the setup ratio of the 
mix, shown for two product mixes in Figure 3. A small 

-value, which is beneficial for product mixes with high 
setup ratio (e.g. [30,40,20,10]), would lead to a 30% deg-
radation in performance for product mixes with a lower 
setup ratio. In this study, a machine utilization of 85 % is 
considered. It should be mentioned that the raw data 
shows an increase of up to 5 % utilization depending on 
the different setup time proportions per product mix, for 
the same planned utilization. Further, low utilization lev-
els mean that no potential for improvement is possible. 
This situation must be examined over a number of prod-
uct mixes in order to improve performance. 

 

 
Figure 3: Based on the -values, the performance of 

product mix [30,40,20,10] (left) and product  
mix [10,70,10,10] (right) are different given  
the planned utilization of 85 %. 

In addition to the first data set with 46200 data points, a 
second data set with 13860 data points (corresponding to 
30% of the first data set) is generated. Subsequently, the 
NNs as well as the decision trees (DTs) were trained on 
both sets to be able to make a statement about the perfor-
mance with more data points. The parameters for the NNs 
as well as the DTs were determined using a grid search 
procedure 

The NN was implemented as a multi-layer perceptron 
in Python using the scikit learn library. The resulting two-
layer network with 10 neurons in the first layer and 30 
neurons in the second layer had the activation function 
"relu". In combination with the solver "adam", a mini-
batch size of 500 samples showed good results. The ini-
tial learning rate was set to 0.01. An L2 regularization 
was performed. 

The DT was implemented using scikit learn as a de-
cision tree regressor in Python. In this framework, it was 
found that using a maximum depth of 5, with at least 4 
samples per leaf led to good results. 

The RL agent was trained using the Pathmind soft-
ware-as-a-service platform with 12000 simulation runs. 
For training, the discrete-event simulation model was ex-
ported as a stand-alone Java file and trained on the plat-
form, independent of local resources for 12 hours.  
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During this process, various hyperparameter configu-

rations were automatically evaluated as part of popula-
tion-based training and the best configuration for the sce-
nario was found. Pathmind uses Ray and RLlib for train-
ing the agent. The strategy of the agent was trained by 
Proximal Policy Optimization 

As part of the evaluation, the three methods are tested 
in online use in the context of the event discrete simula-
tion. This involves documenting performance for a 
known scenario with a static workload and a known prod-
uct mix. In the following, the scenario is a workload of 
85% and product mix [30,40,20,10] from above. Figure 4 
shows an example of the agent's behavior trained with re-
inforcement learning. As seen above, a low -value is 
beneficial for the product mix [30,40,20,10]. It can be 
clearly seen that when the average delay (left Y-axis) in 
the system varies over time (X-axis), the used -values 
of the ATCS rule (right Y-axis) is adjusted. 

Over 30 replications, for a static utilization and for a 
known product mix, dynamic adjustment of k-values 
with RL has a positive impact but is not significantly dif-
ferent from static selection of k-values.  

Of particular interest (see Figure 5) is the poor perfor-
mance of the NNs; it is reasonable to assume that the dy-
namic selection and adjustment of the rules by the NNs 
has a negative impact on performance in the static sce-
nario (Priore et al. 2006) 

In the second evaluation scenario for the dynamic ad-
justment, a static utilization with changing product mixes 
is evaluated. In the scenario, a new product mix (in this 
case product mix [10,70,10,10]) is considered in the sys-
tem over ¼ of the simulation time. It can be seen in Fig-
ure 6 that the selection of good static k-values already 
leads to good performance. In comparison, the DTs, the 
NNs as well as the RL agent bring an additional signifi-
cant improvement of up to 15 %. Additionally, the RL 
agent is still 3 % better than the DTs. In contrast to the 
static scenario, the NN can show its advantages regarding 
generalizability of behavior. The comparable perfor-
mance of RL and NN is understandable since RL uses 
NNs to estimate the reward. 

Over the evaluation in both scenarios, it is shown that 
DTs can reproduce known system behavior very well and 
can describe dynamic behavior to some extent.  

 
Figure 4: The RL-agent adjusts the -value based on the system status dynamically. 

 

 
Figure 5: The direct comparison shows the performance with static as well as dynamically adjusted k-values by the DT, 

NN and the RL approach in a known scenario. 
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The use of NNs and RL is especially advantageous in sce-
narios with unknown behavior and can lead to an im-
provement in performance of up to 15%. 

4 Summary and Outlook 
Dynamic adaptation of priority rules using various ma-
chine learning methods can lead to improved perfor-
mance. In this paper, three methods for adjusting the  
k-values of the ATCS rule were trained and evaluated 
over two scenarios. A data set which includes the rela-
tionships between product mix, k-values, and system uti-
lization was created using a flow shop manufacturing en-
vironment and an extensive parameter study. This was 
then used as the training basis for DT and NN, while the 
discrete-event model was used as the training environ-
ment for the RL agent.  

The comparison within the static scenario shows that 
DT and RL can reproduce the performance of the static 
k-values. During training, it was shown that the use of 
DTs can help in making qualitative statements regarding 
performance. In the dynamic scenario, it was shown that 
all three methods can improve the performance. On par, 
RL and NN can reduce average delay by 15% and com-
pensate for unplanned product mix changes. In the next 
step, a deep and detailed analysis of the dynamic adjust-
ment over multiple product mixes and unknown scenar-
ios will be performed 
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Liophant Simulation is a non-profit association born in 
order to be a trait-d'union among simulation developers 
and users; Liophant is devoted to promote and diffuse the 
simulation techniques and methodologies; the Associa-
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ganization of International Conferences, courses and in-
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 LIOPHANT Simulation, c/o Agostino G. Bruzzone, 
DIME, University of Genoa, Savona Campus 
via Molinero 1, 17100 Savona (SV), Italy 

LIOPHANT Officers 
President A.G. Bruzzone, agostino@itim.unige.it 
Director E. Bocca, enrico.bocca@liophant.org 
Secretary A. Devoti, devoti.a@iveco.com 
Treasurer Marina Massei, massei@itim.unige.it 
Repr. EUROSIM A.G. Bruzzone, agostino@itim.unige.it 
Deputy F. Longo, f.longo@unical.it 
Edit. Board SNE F. Longo, f.longo@unical.it  
Web EUROSIM F. Longo, f.longo@unical.it 

 Last data update June 2016 

LSS – Latvian Simulation Society 
The Latvian Simulation Society (LSS) has been founded 
in 1990 as the first professional simulation organisation 
in the field of Modelling and simulation in the post-So-
viet area. Its members represent the main simulation cen-
tres in Latvia, including both academic and industrial 
sectors. 

 www.itl.rtu.lv/imb/ 
 Egils.Ginters@rtu.lv 
 Prof. Egils Ginters, Kirshu Str.13A, Cesis LV-4101,  
Latvia 

LSS Officers 
President Yuri Merkuryev, merkur@itl.rtu.lv 
Vice President Egils Ginters, egils.ginters@rtu.lv 
Secretary Artis Teilans, artis.teilans@rta.lv 
Repr. EUROSIM Egils Ginters, egils.ginters@rtu.lv 
Deputy Artis Teilans, artis.teilans@rta.lv 
Edit. Board SNE Juri Tolujew, Juri.Tolujew@iff.fraunhofer.de 
Web EUROSIM Vitaly Bolshakov, vitalijs.bolsakovs@rtu.lv 

 Last data update November 2020 
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KA-SIM Kosovo Simulation Society 
Kosova Association for Modeling and Simulation (KA-
SIM, founded in 2009), is part of Kosova Association of 
Control, Automation and Systems Engineering (KA-
CASE). KA-CASE was registered in 2006 as non Profit 
Organization and since 2009 is National Member of IFAC 
– International Federation of Automatic Control. KA-SIM 
joined EUROSIM as Observer Member in 2011. In 2016, 
KA-SIM became full member. 
KA-SIM has about 50 members, and is organizing the in-
ternational conference series International Conference in 
Business, Technology and Innovation, in November, in 
Durrhes, Albania, and IFAC Simulation Workshops in 
Pristina. 
 

  www.ubt-uni.net/ka-case 
  ehajrizi@ubt-uni.net 
 MOD&SIM KA-CASE;   Att. Dr. Edmond Hajrizi 

      Univ. for Business and Technology (UBT) 
      Lagjja Kalabria p.n., 10000 Prishtina, Kosovo 
 

KA-SIM Officers 
President Edmond Hajrizi, ehajrizi@ubt-uni.net 
Vice president Muzafer Shala, info@ka-sim.com 
Secretary Lulzim Beqiri, info@ka-sim.com 
Treasurer Selman Berisha, info@ka-sim.com 
Repr. EUROSIM Edmond Hajrizi, ehajrizi@ubt-uni.net 
Deputy Muzafer Shala, info@ka-sim.com 
Edit. Board SNE Edmond Hajrizi, ehajrizi@ubt-uni.net 
Web EUROSIM Betim Gashi, info@ka-sim.com 

 Last data update December 2016 

 

 

NSSM – National Society for Simulation 
Modelling (Russia) 
NSSM - The Russian National Simulation Society 
(    -

 – ) was officially registered in Russian 
Federation on February 11, 2011. In February 2012 NSS 
has been accepted as an observer member of EUROSIM, 
and in 2015 NSSM has become full member. 

 www.simulation.su 
 yusupov@iias.spb.su 
 NSSM / R. M. Yusupov,  
St. Petersburg Institute of Informatics and Automation 
RAS, 199178, St. Petersburg, 14th lin. V.O, 39  

NSSM Officers 
President R. M. Yusupov, yusupov@iias.spb.su 
Chair Man. Board A. Plotnikov, plotnikov@sstc.spb.ru 
Secretary M. Dolmatov, dolmatov@simulation.su 

Repr. EUROSIM R.M. Yusupov, yusupov@iias.spb.su  
Y. Senichenkov,  

senyb@dcn.icc.spbstu.ru 
Deputy B. Sokolov, sokol@iias.spb.su 
Edit. Board SNE Y. Senichenkov, senyb@mail.ru, 

senyb@dcn.icc.spbstu.ru,  
 Last data update February 2018 

PSCS – Polish Society for Computer 
Simulation 
PSCS was founded in 1993 in Warsaw. PSCS is a scien-
tific, non-profit association of members from universi-
ties, research institutes and industry in Poland with com-
mon interests in variety of methods of computer simula-
tions and its applications. At present PSCS counts 257 
members. 

 
 www.eurosim.info, www.ptsk.pl/ 
 leon@ibib.waw.pl 
 PSCS / Leon Bobrowski, c/o IBIB PAN, 
ul. Trojdena 4 (p.416), 02-109 Warszawa, Poland 

 
PSCS Officers 
President Tadeusz Nowicki,  

Tadeusz.Nowicki@wat.edu.pl 
Vice president Leon Bobrowski, leon@ibib.waw.pl 
Treasurer Z. Sosnowski, zenon@ii.pb.bialystok.pl 
Secretary Zdzislaw Galkowski, 

Zdzislaw.Galkowski@simr.pw.edu.pl 
Repr. EUROSIM Leon Bobrowski, leon@ibib.waw.pl 
Deputy Tadeusz Nowicki, tadeusz.nowicki@wat.edu.pl 
Edit. Board SNE Zenon Sosnowski, z.sosnowski@pb.ed.pl 
Web EUROSIM Magdalena Topczewska  

m.topczewska@pb.edu.pl 
 Last data update May 2022 
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SIMS – Scandinavian Simulation Society 
SIMS is the Scandinavian Simulation Society with mem-
bers from the five Nordic countries Denmark, Finland, 
Iceland, Norway and Sweden. The SIMS history goes 
back to 1959. SIMS practical matters are taken care of by 
the SIMS board consisting of two representatives from 
each Nordic country (Iceland one board member). 

 
SIMS Structure. SIMS is organised as federation of re-
gional societies. There are FinSim (Finnish Simulation 
Forum), MoSis (Society for Modelling and Simulation in 
Sweden), DKSIM (Dansk Simuleringsforening) and 
NFA (Norsk Forening for Automatisering).  
 

 www.scansims.org 
 bernt.lie@usn.no 
 SIMS / Bernt Lie, Faculty of Technology, Univ.College of 
Southeast Norway, Department of Technology, Kjølnes 
ring 56, 3914 Porsgrunn, Norway 

 
SIMS Officers 
President Tiina Komulainen,  

tiina.komulainen@oslomet.no 
Vice president Erik Dahlquist, erik.dahlquist@mdh.se 
Treasurer Vadim Engelson,  

vadime@mathcore.com 
Repr. EUROSIM Esko Juuso, esko.juuso@oulu.fi 
Edit. Board SNE Esko Juuso, esko.juuso@oulu.fi 
Web EUROSIM Vadim Engelson,  

vadime@mathcore.com 
 Last data update May 2022 

 
 

 

 

SLOSIM – Slovenian 
Society for Simulation 
and Modelling 

SLOSIM - Slovenian Society for Simulation and 
Modelling was established in 1994 and became the 
full member of EUROSIM in 1996. Currently it has 90 
members from both Slovenian universities, institutes, 
and industry. It promotes modelling and simulation 
approaches to problem solving in industrial as well as 
in academic environments by establishing communi-
cation and cooperation among corresponding teams. 
 

 www.slosim.si 
 slosim@fe.uni-lj.si 
 SLOSIM / Vito Logar, Faculty of Electrical  
Engineering, University of Ljubljana,  
Tržaška 25, 1000 Ljubljana, Slovenia 

SLOSIM Officers 
President Vito Logar, vito.logar@fe.uni-lj.si  
Vice president Božidar Šarler, bozidar.sarler@ung.si 
Secretary Simon Tomaži , simon.tomazic@fe.uni-lj.si 
Treasurer Milan Sim i , milan.simcic@fe.uni-lj.si 
Repr. EUROSIM B. Zupan i , borut.zupancic@fe.uni-lj.si 
Deputy Vito Logar, vito.logar@fe.uni-lj.si 
Edit. Board SNE R. Karba, rihard.karba@fe.uni-lj.si 
Web EUROSIM Vito Logar, vito.logar@fe.uni-lj.si 

 Last data update December 2018 

UKSIM - United Kingdom Simulation Society 
The UK Simulation Society is very active in organizing 
conferences, meetings and workshops. UKSim holds its 
annual conference in the March-April period. In recent 
years the conference has always been held at Emmanuel 
College, Cambridge. The Asia Modelling and Simulation 
Section (AMSS) of UKSim holds 4-5 conferences per 
year including the EMS (European Modelling Sympo-
sium), an event mainly aimed at young researchers, orga-
nized each year by UKSim in different European cities.  
Membership of the UK Simulation Society is free to par-
ticipants of any of our conferences and their co-authors.  

 

uksim.info 
 david.al-dabass@ntu.ac.uk 

 UKSIM / Prof. David Al-Dabass 
Computing & Informatics,  
Nottingham Trent University 
Clifton lane, Nottingham, NG11 8NS, United King-
domUKSIM Officers 
President David Al-Dabass, 

david.al-dabass@ntu.ac.uk 
Secretary T. Bashford, tim.bashford@uwtsd.ac.uk 
Treasurer D. Al-Dabass, david.al-dabass@ntu.ac.uk 
Membership 
chair 

G. Jenkins, glenn.l.jenkins@smu.ac.uk 

Local/Venue chair Richard Cant, richard.cant@ntu.ac.uk 
Repr. EUROSIM Dr Taha Osman, taha.osman@ntu.ac.uk 
Deputy T. Bashford, tim.bashford@uwtsd.ac.uk 
Edit. Board SNE D. Al-Dabass, david.al-dabass@ntu.ac.uk 

 Last data update March 2020 
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EUROSIM Observer Members 
ROMSIM – Romanian Modelling and 
Simulation Society 
ROMSIM has been founded in 1990 as a non-profit soci-
ety, devoted to theoretical and applied aspects of model-
ling and simulation of systems. 

 www.eurosim.info/societies/romsim/ 
 florin_h2004@yahoo.com 
 ROMSIM / Florin Hartescu,  
National Institute for Research in Informatics, Averescu 
Av. 8 – 10, 011455 Bucharest, Romania 
 

ROMSIM Officers 
President N. N. 
Vice president Florin Hartescu, 

 florin_h2004@yahoo.com 
Marius Radulescu,  
     mradulescu.csmro@yahoo.com 

Repr. EUROSIM Marius Radulescu 
Deputy Florin Hartescu 
Edit. Board SNE Constanta Zoe Radulescu, zoe@ici.ro 
Web EUROSIM Florin Hartescu 

 Last data update  June 2019 

 

ALBSIM – Albanian Simulation Society 
The Albanian Simulation Society has been initiated at the 
Department of Statistics and Applied Informatics, Fac-
ulty of Economy at the University of Tirana, by Prof. Dr. 
Kozeta Sevrani. The society is involved in different in-
ternational and local simulation projects, and is engaged 
in the organisation of the conference series ISTI - Infor-
mation Systems and Technology. In July 2019 the society 
was accepted as EUROSIM Observer Member. 

 www.eurosim.info/societies/albsim/ 
 kozeta.sevrani@unitir.edu.al 
  Albanian Simulation Goup, attn. Kozeta Sevrani 
University of Tirana, Faculty of Economy  
 rr. Elbasanit,  Tirana 355  Albania 

 

 

 

 

 

 

 

 

 

 

 

Albanian Simulation Society-  Officers  
Chairt Kozeta Sevrani,  

kozeta.sevrani@unitir.edu.al 
Repr. EUROSIM Kozeta Sevrani 
Edit. Board 
SNE 

Albana Gorishti,  
albana.gorishti@unitir.edu.al 

Majlinda Godolja,  
majlinda.godolja@feut.edu.al 

 Last data update July 2019 

Societies in Re-organisation /  
Former Societies 
The following societies are at present inactive or under 
re-organisation: 
• CROSSIM – Croatian Society for Simulation  

Modelling  
Contact: Tarzan Legovi , Tarzan.Legovic@irb.hr 

• FRANCOSIM – Société Francophone de Simulation 
• HSS – Hungarian Simulation Society 
• ISCS – Italian Society for Computer Simulation 
The following societies have been formally terminated: 
• MIMOS –Italian Modeling & Simulation Association; 

terminated end of 2020. 

 

HSS – Hungarian Simulation Society 
There are plans to reactivate Hungarian Simulation Soci-
ety. M. Mujica Mota EUROSIM President, is in contact 
with  Andrási Gábor, Head of the Dean's office at the 
Faculty of International Management and Business 
of Budapest Business School University of Applied 
Sciences (BBS). We ask interested people to contact 
Mr. Gábor, andrasi.gabor@uni-bge.hu. 
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Association 
Simulation News 

 

 
ARGESIM is a non-profit association generally aiming 
for dissemination of information on system simulation – 
from research via development to applications of system 
simulation. ARGESIM is closely co-operating with EU-
ROSIM, the Federation of European Simulation Socie-
ties, and with ASIM, the German Simulation Society. 
ARGESIM is an 'outsourced' activity from the Mathe-
matical Modelling and Simulation Group of TU Wien, 
there is also close co-operation with TU Wien (organisa-
tionally and personally). 
        www.argesim.org 

   office@argesim.org 
 ARGESIM/Math. Modelling & Simulation Group,  

       Inst. of Analysis and Scientific Computing, TU Wien 
       Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria 

Attn. Prof. Dr. Felix Breitenecker 
 

ARGESIM is following its aims and scope by the fol-
lowing activities and projects: 
• Publication of the scientific journal SNE –  

Simulation Notes Europe (membership journal of 
EUROSIM, the Federation of European Simula-
tion Societies) – www.sne-journal.org 

• Organisation and Publication of the ARGESIM 
Benchmarks for Modelling Approaches and Simu-
lation Implementations  

• Publication of the series ARGESIM Reports for  
monographs in system simulation, and proceedings 
of simulation conferences and workshops 

• Publication of the special series  FBS Simulation – 
Advances in Simulation / Fortschrittsberichte Simu-
lation - monographs in co-operation with ASIM, 
the German Simulation Society 

• Support of the Conference Series MATHMOD  
Vienna (triennial, in co-operation with EUROSIM, 
ASIM, and TU Wien) – www.mathmod.at 

• Administration of ASIM (German Simulation Soci-
ety) and administrative support for EUROSIM 
www.eurosim.info 

• Simulation activities for TU Wien 

ARGESIM is a registered non-profit association and a reg-
istered publisher: ARGESIM Publisher Vienna, root ISBN 
978-3-901608-xx-y, root DOI 10.11128/z…zz.zz. Publi-
cation is open for ASIM and for EUROSIM Member Soci-
eties. 

 
 

SNE – Simulation 
Notes Europe  

 
The scientific journal SNE – Simulation Notes Europe 
provides an international, high-quality forum for presen-
tation of new ideas and approaches in simulation – from 
modelling to experiment analysis, from implementation 
to verification, from validation to identification, from nu-
merics to visualisation – in context of the simulation pro-
cess. SNE puts special emphasis on the overall view in 
simulation, and on comparative investigations. 
Furthermore, SNE welcomes contributions on education 
in/for/with simulation. 

 
SNE is also the forum for the ARGESIM Benchmarks 

on Modelling Approaches and Simulation Implemen-ta-
tions publishing benchmarks definitions, solutions, re-
ports and studies – including model sources via web. 

 
       www.sne-journal.org,  

   office@sne-journal.org, eic@sne-journal.org 
 SNE Editorial Office  

          ARGESIM/Math. Modelling & Simulation Group,  
           Inst. of Analysis and Scientific Computing, TU Wien 
          Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria 

    EiC Prof. Dr. Felix Breitenecker 

 
SNE, primarily an electronic journal, follows an open ac-
cess strategy, with free download in basic layout. SNE is 
the official membership journal of EUROSIM, the Feder-
ation of European Simulation Societies. Members of EU-
ROSIM Societies are entitled to download SNE in high-
quality, and to access additional sources of benchmark 
publications, model sources, etc. On the other hand, SNE 
offers EUROSIM Societies a publication forum for post-
conference publication of the society’s international con-
ferences, and the possibility to compile thematic or 
event-based SNE Special Issues. 

 

Simulationists are invited to submit contributions of 
any type – Technical Note, Short Note, Project Note, Edu-
cational Note, Benchmark Note, etc. via SNE’s website:  

       www.sne-journal.org,  





ISBN 978-3-903311-32-9
w w w . t u v e r l a g . a t

Die zunehmende Digitalisierung im täglichen Leben macht keinen Halt vor dem Maschinenbau. Während es

für viele von uns fast schon zum Alltag gehört, mit dem Smartphone die Jalousien oder die Waschmaschine

zu steuern, werden die Auswirkungen der Digitalisierung im Maschinenbau erst jetzt immer deutlicher. Die

heutigen Anforderungen an Produktionsanlagen heutzutage sind vielseitig. Kürzere Produktlebenszeiten

führen zu flexibleren, rekonfigurierbaren Anlagen, während kürzere „time-to-market“ schnelle Hochläufe der

Produktionsanlagen erfordern.

Die zweitägige Anwendertagung „Simulation in Produktion und Logistik – im täglichen Einsatz in der

Industrie“ bietet die Gelegenheit, mit Simulationsexpertinnen und -experten, innovativen Technologie-

anbietern, sowie kreativen Wissenschaftlerinnen und Wissenschaftlern den Einsatz und die Heraus-

forderungen von Simulation im täglichen industriellen Umfeld zu diskutieren. Der Fokus der Tagung liegt im

Austausch untereinander und in der Anwendung von Methoden und Werkzeugen in der Praxis. Im Rahmen

der Anwendertagung wird eine begleitende Ausstellung angeboten; verschiedene Industrie-unternehmen

werden Table-top-Präsentationen ausstellen.

www.faps-ipc.de/veranstaltungen/1-asim-anwendertagung/

Als größte europäische Simulationstagung für Produktion und Logistik präsentiert die ASIM Fachtagung alle

zwei Jahre zukunftsweisende Trends und aktuelle Entwicklungen, wissenschaftliche Arbeiten sowie

interessante Anwendungen in der Industrie.

Der thematische Fokus der nächsten Fachtagung lautet Nachhaltigkeit in Produktion und Logistik. Damit

greift die Tagung eine wichtige gesellschaftliche Thematik auf und fokussiert gleichzeitig auf aktuelle

Forschungsthemen der Simulationswelt.

www.asim-fachtagung-spl.de/


