
S N E T E C H N I C A L N O T E

SNE 32(3) – 9/2022 169

Using Decision Trees and Reinforcement Learning for
the Dynamic Adjustment of Composite Sequencing

Rules in a Flexible Manufacturing System
Thomas Voß*, Jens Heger, Mazhar Zein El Abdine

Leuphana University Lüneburg, Inst. of Product & Process Innovation, Universitätsallee 1,
21335 Lüneburg, Germany; *voss@leuphana.de

Abstract. Integrating machine learning methods into the
scheduling process to adjust priority rules dynamically
can improve the performance of manufacturing systems.
In this paper, three methods for adjusting the k-values of
the ATCS sequencing rule are analyzed: neural networks,
decision trees and reinforcement learning. They are eval-
uated in a static and a dynamic scenario. The required da-
taset was synthetically generated using a discrete event
simulation of a flow shop environment, where product
mix and system utilization were varied systematically.
Across all scenarios, it is shown that all three methods can
improve the performance. On par, RL and NN can reduce
the mean tardiness by up to 15% and compensate for un-
planned product mix changes.

Introduction
Finding a good sequence of operations on a machine can
be difficult under changing conditions, such as machine
failure. Since the use of centralized and static solution
methods is not suitable in complex and uncertain scenar-
ios, decentralized sequencing rules are a viable option.
These rules use locally available information for fast de-
cision making. However, no rule exists that outperforms
all others under varying system performance.

For this reason, a hyperheuristic is developed to dy-
namically select and adjust weighting values of a compo-
site sequencing rule, selecting the next job to be pro-
cessed based on the system state. Based on a variety of
training scenarios considering several dynamic influ-
ences, such as stochastically distributed arrival times or

changing proportions of product families in the product
mix, the benefits of dynamically adjusting the k-factors
of the rule is presented.

To estimate the performance of the system based on
the current state, different machine learning models have
provided very good results depending on the selection of
the weights of the composite rule (Heger 2014; Mouelhi-
Chibani and Pierreval 2010; Shiue et al. 2018). When us-
ing these methods, however, there is not only the ques-
tion of the amount of training points, but also the aspect
of transferability of the acquired knowledge in new sce-
narios and the suitability, generalizability and traceability
of the methods used (Priore et al. 2006; Priore et al. 2018;
Usuga Cadavid et al. 2020).

The knowledge and understanding of actions and de-
cisions taken during the process is crucial and is increas-
ingly preferred as opposed to simple prediction and black
box optimization (Nunes and Jannach 2017; Rehse et al.
2019). At this point, the usage of hyperheuristics for the
selection and adjustment of different sequencing rules in
combination with comprehensible learning methods (e.g.
decision trees) can prove useful. This contribution elabo-
rates on the usage of three different methods to dynami-
cally adjust the behavior with regards to performance and
comprehensibility.

1 State-of-the-Art
Due to their ease of comprehension and very short com-
putation time, the use of priority rules for sequencing, i.e.
selecting the next job to be processed by the machines, is
very popular in the industry. It should be noted that more
than 100 rules are known, which perform differently de-
pending on the scenario (Panwalkar and Iskander 1977).
Over the years, priority rules which look at multiple job
attributes simultaneously have been developed to im-
prove system performance.

SNE 32(3), 2022, 169-175, DOI: 10.11128/sne.32.tn.10617
Selected ASIM SPL 2021 Postconf. Publication: 2022-01-27;
Received English version: 2022-05-29; Accepted: 2022-06-03
SNE - Simulation Notes Europe, ARGESIM Publisher Vienna
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Voß et al. Reinforcement Learning for Dynamic Adjustment of Composite Sequencing Rules

170 SNE 32(3) – 9/2022

T N
For example, the „Apparent Tardiness Cost“ rule,

which, in addition to the weighted process time, also in-
cludes the planned completion time and a weighting
value () (Vepsalainen and Morton 1987). With regard
to setup times, the rule was then extended to include a
setup time term and has been since described as "Appar-
ent Tardiness Cost with Setups" (ATCS). The additional
term denotes the ratio between sequence-dependent setup
time and average setup time multiplied by the second
weighting value (). The rule is used in the form shown
in equation (1) for this study. The combination of three
attributes and the use of two weighting values make it
possible to achieve good performance across a wide
range of scenarios when properly tuned (Lee et al. 2002).
 = () , (1)

Knowing that the system performance strongly depends
on the correct selection of the k-values to match the sys-
tem workload, they are required to be dynamically ad-
justed to the situation on the shop floor. Consequently,
the dynamic adaptation is a hyperheuristic. However, to
build the knowledge base about the relationship between
the k-values and the resulting performance, all possible
combinations of k-values, product mix and system state
would have to be known.

Because of the complexity in real systems, not all
possible combinations of influencing factors can be sim-
ulated. For that reason, a defined combinations of system
states is simulated and the unknown situations are esti-
mated by a regression procedure

In the current state of the literature, the use of neural
networks (NN) represents the standard to forecast system
behavior. Specifically, the usage of NN for the prediction
of system performance was considered in detail with re-
gard to the dependence on the k-values and the system
status in multiples works (Heger 2014; Heger et al. 2016;
Mönch et al. 2006; Mouelhi-Chibani and Pierreval 2010).
However, despite good results, it should be noted that
NNs are basically used as a black box and do not allow
us to infer any information about the influence of certain
factors. To this end, the use of NNs as a baseline was pre-
viously compared with the use of decision trees and rein-
forcement learning (Rai, 2020).

Decision trees have recently received significant at-
tention in the context of Explainable AI (Puiutta and
Veith 2020; Rai 2020).

Unlike complex methods, such as deep NNs, which
produce non-interpretable black-box models, decision
trees are rule-based methods that provide the user with an
intuitive representation of rules and processes. At each
node of a decision tree, a particular objective function is
tested. The result provides the path to the new node. The
structure repeats until a particular condition is met. Hu-
man comprehensible rules can be derived from paths
through the decision tree.

Due to their structure, decision trees can be used for
both classification and regression tasks. Thus, being gen-
erally suitable for dynamic selection of priority rules,
they are prone to perform worse in unknown scenarios
(Shahzad and Mebarki 2016). Other tree-based methods,
such as Random Forest and XGBoost, based on a combi-
nation of decision trees and have forfeited a certain de-
gree of interpretability in order to achieve better accuracy
and generalization. Nevertheless, they are increasingly
equipped with further functionalities to improve inter-
pretability (Lundberg et al. 2020)

The use of reinforcement learning has already
achieved good results as a hyperheuristic in the dynamic
selection of sequencing rules. Studies show that the in-
herent advantages of reinforcement learning, as opposed
to supervised learning methods, are in the direct interac-
tion with the system. The agent learns the correct behav-
iors based on the observed behavior and the feedback re-
ceived. Specifically, the use case entailing the selection
of priority rules for all machines in the system (Heger and
Voss 2020, 2021) has shown good results. The authors
show that based on the observed system workload and
queues, performance can be improved by dynamically se-
lecting sequencing rules. Similarly, other authors show
that dynamic adaptation of machine-specific rules ena-
bles significant performance improvements across differ-
ent scenarios (Shiue et al. 2018, 2020).

This paper examines the extent to which the three
aforementioned methods can be useful in supporting the
selection of appropriate k-values for the ATCS sequenc-
ing rule. Specifically, the extent to which the use of com-
prehensible actions leads to a reduction in performance is
to be examined. The interaction effects between perfor-
mance and explainability is examined in more detail in
the context of the presented scenario. In addition, using
the trained hyperheuristics, it is to be tested whether they
are still able to select and dynamically adjust the k-values
according to the system state in an unknown scenario,
thereby achieving a more robust performance

.

Voß et al. Reinforcement Learning for Dynamic Adjustment of Composite Sequencing Rules

SNE 32(3) – 9/2022 171

T N
2 Simulation and Scenario
The study is used and conducted in the context of a man-
ufacturing system with sequence-dependent setup times.
Unplanned and unknown changes, such as product mix
changes and workload fluctuations, are added to be able
to look at a behavior of the different methods in unknown
scenarios. The scenario is described in detail below:

System
Machines: 10
Machine Groups: 5
Structure: Flow shop

Job
Parameter

Product types: 4
Distribution of product types:
 based on Product Mix
Operations per Order: 10
Distribution of Interarrival Times:
 Poisson Process times: 1 – 99
Distribution of Process times:
 uniform
Due Date: TWK Method

Simulation Warm Up: 2500 Jobs
Duration of Simulation: 12500 Jobs

KPIs Average Mean Tardiness

Table 1: Detailed description of the flow shop scenario.

The particular focus in this contribution is to consider the
impact of the sequence-dependent setup times, which are
shown below. Depending on the product mix, the propor-
tions of the four product types are different, which leads
to different ratios of setup time. Thus, it can be assumed
that a product mix with the first three product families
requires significantly less setup time than a product mix
containing all four product families. Here, the matrix in
(2) can be read as follows: the setup time from family 1
to family 2 is 5 minutes; the setup time from family 1 to
family 4 is 25 minutes. With an average processing time
of 50 minutes, the setup time ratio can have a massive
impact on the performance of the system. 0 55 0 10 2510 255 55 5 0 2510 0 (2)

To measure performance, the av-
erage mean tardiness and the aver-
age lead time are documented. The
average tardiness results from the
sum of all deviations of planned
completion time and the actual
completion divided by the number
of observations.

It should be noted that orders completed too early are
assessed with a delay of zero. The due date, considered
as the planned completion time, is calculated from the
sum of the start time and the average planned processing
time for all steps multiplied by a due date factor. The due
date factor is selected so that a certain setup-, maintenance-
and transport-time between machines is acceptable.

For the creation of regression models, training data is
generated in an extensive parameter study using the dis-
crete-event simulation model. The use of the simulation
makes it possible to determine the length and width of the
data set itself. The generated data forms the basis for the
knowledge-based approaches to dynamic adjustment de-
scribed later. In this case, the simulation model is availa-
ble as a training environment for reinforcement learning
as well.

Figure 1 describes the multiple steps of the proce-
dure; starting at the bottom center is the simulation
model. Through the parameter variation experiment it is
possible to examine the behavior of the performance de-
pending on different system state combinations, thus
making it possible to create training data for the different
regression models.

Figure 2: The regression model is trained offline based

on the simulation and utilized online after
 training as a decision support system.

Figure 2 shows a schematic of the dynamic adaptation
procedure during the online application. It considers the
performance of the system over time and under changing
states as well as the last selection of k-values. Depending
on the selected performance indicator, the goal is to min-
imize or maximize this performance value; in this contri-
bution, the minimization of the average tardiness is con-
sidered.

Figure 1: Generalized behavior of the adjustment of k-value pairs with RL.

Voß et al. Reinforcement Learning for Dynamic Adjustment of Composite Sequencing Rules

172 SNE 32(3) – 9/2022

T N
At defined points in time, regardless of the particular

method being used, decision support utilizes the regres-
sion model to make a statement about the most appropri-
ate k-values for the situation to improve performance.
The values are used for a defined period of time and re-
evaluated afterwards

It is necessary to evaluate whether and to what degree
the variation occurs due to the inherent stochastic uncer-
tainties of the simulation model. The simulation study
can further evaluate how the frequency of adjustment af-
fects performance.

A parameter analysis is performed in this context to
find out which observations have significant influence,
and which do not. Data pre-processing such as standard-
ization, one-hot encoding, and a combination of these are
performed independently of the method used, but due to
the simulation focus, their consequences are not evalu-
ated in detail.

3 Evaluation
For the training data set, a parameter study was per-
formed recording all possible combinations of -values
from 1 to 10 and -values from 0.01 to 1.01 under 7 dif-
ferent workloads from 85 % to 95 % as well as 12 differ-
ent product mixes with different setup proportions.

For each of the 9240 individual parameter combina-
tions, 5 replications were performed. The data set used
thus comprises 46200 samples. The observations from
the system were the average mean tardiness, average lead
time, product mix, and average machine utilization. In
this contribution, the k-values, machine utilization, and
performance indicators are considered as continuous var-
iables, while the product mix is considered as a categori-
cal variable.

In the raw data, it can be seen that product mixes per-
form differently at the same utilization rate and using the
same static k-values, depending on the setup ratio of the
mix, shown for two product mixes in Figure 3. A small

-value, which is beneficial for product mixes with high
setup ratio (e.g. [30,40,20,10]), would lead to a 30% deg-
radation in performance for product mixes with a lower
setup ratio. In this study, a machine utilization of 85 % is
considered. It should be mentioned that the raw data
shows an increase of up to 5 % utilization depending on
the different setup time proportions per product mix, for
the same planned utilization. Further, low utilization lev-
els mean that no potential for improvement is possible.
This situation must be examined over a number of prod-
uct mixes in order to improve performance.

Figure 3: Based on the -values, the performance of

product mix [30,40,20,10] (left) and product
mix [10,70,10,10] (right) are different given
the planned utilization of 85 %.

In addition to the first data set with 46200 data points, a
second data set with 13860 data points (corresponding to
30% of the first data set) is generated. Subsequently, the
NNs as well as the decision trees (DTs) were trained on
both sets to be able to make a statement about the perfor-
mance with more data points. The parameters for the NNs
as well as the DTs were determined using a grid search
procedure

The NN was implemented as a multi-layer perceptron
in Python using the scikit learn library. The resulting two-
layer network with 10 neurons in the first layer and 30
neurons in the second layer had the activation function
"relu". In combination with the solver "adam", a mini-
batch size of 500 samples showed good results. The ini-
tial learning rate was set to 0.01. An L2 regularization
was performed.

The DT was implemented using scikit learn as a de-
cision tree regressor in Python. In this framework, it was
found that using a maximum depth of 5, with at least 4
samples per leaf led to good results.

The RL agent was trained using the Pathmind soft-
ware-as-a-service platform with 12000 simulation runs.
For training, the discrete-event simulation model was ex-
ported as a stand-alone Java file and trained on the plat-
form, independent of local resources for 12 hours.

Voß et al. Reinforcement Learning for Dynamic Adjustment of Composite Sequencing Rules

SNE 32(3) – 9/2022 173

T N
During this process, various hyperparameter configu-

rations were automatically evaluated as part of popula-
tion-based training and the best configuration for the sce-
nario was found. Pathmind uses Ray and RLlib for train-
ing the agent. The strategy of the agent was trained by
Proximal Policy Optimization

As part of the evaluation, the three methods are tested
in online use in the context of the event discrete simula-
tion. This involves documenting performance for a
known scenario with a static workload and a known prod-
uct mix. In the following, the scenario is a workload of
85% and product mix [30,40,20,10] from above. Figure 4
shows an example of the agent's behavior trained with re-
inforcement learning. As seen above, a low -value is
beneficial for the product mix [30,40,20,10]. It can be
clearly seen that when the average delay (left Y-axis) in
the system varies over time (X-axis), the used -values
of the ATCS rule (right Y-axis) is adjusted.

Over 30 replications, for a static utilization and for a
known product mix, dynamic adjustment of k-values
with RL has a positive impact but is not significantly dif-
ferent from static selection of k-values.

Of particular interest (see Figure 5) is the poor perfor-
mance of the NNs; it is reasonable to assume that the dy-
namic selection and adjustment of the rules by the NNs
has a negative impact on performance in the static sce-
nario (Priore et al. 2006)

In the second evaluation scenario for the dynamic ad-
justment, a static utilization with changing product mixes
is evaluated. In the scenario, a new product mix (in this
case product mix [10,70,10,10]) is considered in the sys-
tem over ¼ of the simulation time. It can be seen in Fig-
ure 6 that the selection of good static k-values already
leads to good performance. In comparison, the DTs, the
NNs as well as the RL agent bring an additional signifi-
cant improvement of up to 15 %. Additionally, the RL
agent is still 3 % better than the DTs. In contrast to the
static scenario, the NN can show its advantages regarding
generalizability of behavior. The comparable perfor-
mance of RL and NN is understandable since RL uses
NNs to estimate the reward.

Over the evaluation in both scenarios, it is shown that
DTs can reproduce known system behavior very well and
can describe dynamic behavior to some extent.

Figure 4: The RL-agent adjusts the -value based on the system status dynamically.

Figure 5: The direct comparison shows the performance with static as well as dynamically adjusted k-values by the DT,

NN and the RL approach in a known scenario.

Voß et al. Reinforcement Learning for Dynamic Adjustment of Composite Sequencing Rules

174 SNE 32(3) – 9/2022

T N

The use of NNs and RL is especially advantageous in sce-
narios with unknown behavior and can lead to an im-
provement in performance of up to 15%.

4 Summary and Outlook
Dynamic adaptation of priority rules using various ma-
chine learning methods can lead to improved perfor-
mance. In this paper, three methods for adjusting the
k-values of the ATCS rule were trained and evaluated
over two scenarios. A data set which includes the rela-
tionships between product mix, k-values, and system uti-
lization was created using a flow shop manufacturing en-
vironment and an extensive parameter study. This was
then used as the training basis for DT and NN, while the
discrete-event model was used as the training environ-
ment for the RL agent.

The comparison within the static scenario shows that
DT and RL can reproduce the performance of the static
k-values. During training, it was shown that the use of
DTs can help in making qualitative statements regarding
performance. In the dynamic scenario, it was shown that
all three methods can improve the performance. On par,
RL and NN can reduce average delay by 15% and com-
pensate for unplanned product mix changes. In the next
step, a deep and detailed analysis of the dynamic adjust-
ment over multiple product mixes and unknown scenar-
ios will be performed

References

[1] Heger J. Dynamische Regelselektion in der
Reihenfolgeplanung. Springer Fachmedien Wiesbaden,
Wiesbaden, 2014.

[2] Heger J, Voss T. Dynamically Changing Sequencing
Rules with Reinforcement Learning in a Job Shop
System with Stochastic Influences. In: Bae K-H, Feng B,
Kim S, Lazarova-Molnar S, Zheng, Z, Roeder T,
Thiesing R (eds). Proceedings of the Winter Simulation
Conference, 2020, pp 1608–1618.

[3] Heger J, Voss T. Dynamically adjusting the
k-values of the ATCS rule in a flexible flow shop
scenario with reinforcement learning. International
Journal of Production Research, 2021.
DOI 10.1080/00207543.2021.1943762

[4] Heger J, Branke J, Hildebrandt T, Scholz-Reiter B.
Dynamic adjustment of dispatching rule parameters in
flow shops with sequence-dependent set-up times.
International Journal of Production Research
54:6812–6824, 2016.
DOI 10.1080/00207543.2016.1178406

[5] Lee YH, Jeong CS, Moon C. Advanced planning and
scheduling with outsourcing in manufacturing
supply chain. 2002, Computers & Industrial
Engineering 43:351–374.

[6] Lundberg SM, Erion G, Chen H, DeGrave A,
Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N,
Lee S-I. From Local Explanations to Global Understand-
ing with Explainable AI for Trees. 2020,
Nat Mach Intell 2:56–67.
DOI 10.1038/s42256-019-0138-9

Figure 6: The direct comparison shows the performance with static as well

as dynamically adjusted k-values by the DT, NN and the RL
approach in an unknown scenario.

Voß et al. Reinforcement Learning for Dynamic Adjustment of Composite Sequencing Rules

SNE 32(3) – 9/2022 175

T N
[7] Mönch L, Zimmermann J, Otto P. Machine learning

techniques for scheduling jobs with incompatible
families and unequal ready times on parallel batch
machines. 2006, Engineering Applications of Artificial
Intelligence 19:235–245.

[8] Mouelhi-Chibani W, Pierreval H. Training a neural
network to select dispatching rules in real time.
2020, Computers & Industrial Engineering 58:249–256.

[9] Nunes I, Jannach D. A systematic review and taxonomy
of explanations in decision support and recommender
systems. 2017, User Model User-Adap Inter 27:393–444.
DOI /10.1007/s11257-017-9195-0

[10] Panwalkar SS, Iskander W. A Survey of Scheduling
Rules.1977. Operations Research 25:45–61.

[11] Priore P, La Fuente D de, Puente J, Parreno J.
A comparison of machine-learning algorithms for
dynamic scheduling of flexible manufacturing systems.
2006, Engineering Applications of Artificial Intelligence
19:247–255.
DOI 10.1016/j.engappai.2005.09.009

[12] Priore P, Ponte B, Puente J, Gómez A. Learning-based
scheduling of flexible manufacturing systems using en-
semble methods. 2018, Computers & Industrial
DOI 10.1016/j.cie.2018.09.034

[13] Rai A. Explainable AI: from black box to glass box.
2020, J. of the Acad. Mark. Sci. 48:137–141.
DOI 10.1007/s11747-019-00710-5

[14] Rehse J-R, Mehdiyev N, Fettke P. Towards Explainable
Process Predictions for Industry 4.0 in the DFKI-Smart-
Lego-Factory. 2019, Künstl Intell 33:181–187.
DOI 10.1007/s13218-019-00586-1

[15] Shahzad A, Mebarki N. Learning Dispatching Rules for
Scheduling: A Synergistic View Comprising Decision
Trees, Tabu Search and Simulation.
2016, Computers 5:3.
DOI 10.3390/computers5010003

[16] Shiue Y-R, Lee K-C, Su C-T. Real-time scheduling for a
smart factory using a reinforcement learning approach.
2018, Computers & Industrial Engineering 125:604–614.
DOI 10.1016/j.cie.2018.03.039

[17] Shiue Y-R, Lee K-C, Su C-T. A Reinforcement Learning
Approach to Dynamic Scheduling in a Product-Mix
Flexibility Environment.
2020, IEEE Access 8:106542–106553.
DOI 10.1109/ACCESS.2020.3000781

[18] Usuga Cadavid JP, Lamouri S, Grabot B, Pellerin R,
Fortin A. Machine learning applied in production
planning and control: a state-of-the-art in the era of in-
dustry 4.0. 2020, J Intell Manuf 31:1531–1558.
DOI 10.1007/s10845-019-01531-7

[19] Vepsalainen APJ, Morton TE. Priority rules for job
shops with weighted tardiness costs.
1987, Management Science 33:1035–1047

