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Abstract. Integrating machine learning methods into the 
scheduling process to adjust priority rules dynamically 
can improve the performance of manufacturing systems. 
In this paper, three methods for adjusting the k-values of 
the ATCS sequencing rule are analyzed: neural networks, 
decision trees and reinforcement learning. They are eval-
uated in a static and a dynamic scenario. The required da-
taset was synthetically generated using a discrete event 
simulation of a flow shop environment, where product 
mix and system utilization were varied systematically. 
Across all scenarios, it is shown that all three methods can 
improve the performance. On par, RL and NN can reduce 
the mean tardiness by up to 15% and compensate for un-
planned product mix changes. 

Introduction 
Finding a good sequence of operations on a machine can 
be difficult under changing conditions, such as machine 
failure. Since the use of centralized and static solution 
methods is not suitable in complex and uncertain scenar-
ios, decentralized sequencing rules are a viable option. 
These rules use locally available information for fast de-
cision making. However, no rule exists that outperforms 
all others under varying system performance. 

For this reason, a hyperheuristic is developed to dy-
namically select and adjust weighting values of a compo-
site sequencing rule, selecting the next job to be pro-
cessed based on the system state. Based on a variety of 
training scenarios considering several dynamic influ-
ences, such as stochastically distributed arrival times or 

changing proportions of product families in the product 
mix, the benefits of dynamically adjusting the k-factors 
of the rule is presented.  

To estimate the performance of the system based on 
the current state, different machine learning models have 
provided very good results depending on the selection of 
the weights of the composite rule (Heger 2014; Mouelhi-
Chibani and Pierreval 2010; Shiue et al. 2018). When us-
ing these methods, however, there is not only the ques-
tion of the amount of training points, but also the aspect 
of transferability of the acquired knowledge in new sce-
narios and the suitability, generalizability and traceability 
of the methods used (Priore et al. 2006; Priore et al. 2018; 
Usuga Cadavid et al. 2020).  

The knowledge and understanding of actions and de-
cisions taken during the process is crucial and is increas-
ingly preferred as opposed to simple prediction and black 
box optimization (Nunes and Jannach 2017; Rehse et al. 
2019). At this point, the usage of hyperheuristics for the 
selection and adjustment of different sequencing rules in 
combination with comprehensible learning methods (e.g. 
decision trees) can prove useful. This contribution elabo-
rates on the usage of three different methods to dynami-
cally adjust the behavior with regards to performance and 
comprehensibility.  

1 State-of-the-Art 
Due to their ease of comprehension and very short com-
putation time, the use of priority rules for sequencing, i.e. 
selecting the next job to be processed by the machines, is 
very popular in the industry. It should be noted that more 
than 100 rules are known, which perform differently de-
pending on the scenario (Panwalkar and Iskander 1977). 
Over the years, priority rules which look at multiple job 
attributes simultaneously have been developed to im-
prove system performance.  
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For example, the „Apparent Tardiness Cost“ rule, 

which, in addition to the weighted process time, also in-
cludes the planned completion time and a weighting 
value ( ) (Vepsalainen and Morton 1987). With regard 
to setup times, the rule was then extended to include a 
setup time term and has been since described as "Appar-
ent Tardiness Cost with Setups" (ATCS). The additional 
term denotes the ratio between sequence-dependent setup 
time and average setup time multiplied by the second 
weighting value ( ). The rule is used in the form shown 
in equation (1) for this study. The combination of three 
attributes and the use of two weighting values make it 
possible to achieve good performance across a wide 
range of scenarios when properly tuned (Lee et al. 2002). 
 = ( ) ,  (1) 

Knowing that the system performance strongly depends 
on the correct selection of the k-values to match the sys-
tem workload, they are required to be dynamically ad-
justed to the situation on the shop floor. Consequently, 
the dynamic adaptation is a hyperheuristic. However, to 
build the knowledge base about the relationship between 
the k-values and the resulting performance, all possible 
combinations of k-values, product mix and system state 
would have to be known.  

Because of the complexity in real systems, not all 
possible combinations of influencing factors can be sim-
ulated. For that reason, a defined combinations of system 
states is simulated and the unknown situations are esti-
mated by a regression procedure 

In the current state of the literature, the use of neural 
networks (NN) represents the standard to forecast system 
behavior. Specifically, the usage of NN for the prediction 
of system performance was considered in detail with re-
gard to the dependence on the k-values and the system 
status in multiples works (Heger 2014; Heger et al. 2016; 
Mönch et al. 2006; Mouelhi-Chibani and Pierreval 2010). 
However, despite good results, it should be noted that 
NNs are basically used as a black box and do not allow 
us to infer any information about the influence of certain 
factors. To this end, the use of NNs as a baseline was pre-
viously compared with the use of decision trees and rein-
forcement learning (Rai, 2020). 

Decision trees have recently received significant at-
tention in the context of Explainable AI (Puiutta and 
Veith 2020; Rai 2020).  

Unlike complex methods, such as deep NNs, which 
produce non-interpretable black-box models, decision 
trees are rule-based methods that provide the user with an 
intuitive representation of rules and processes. At each 
node of a decision tree, a particular objective function is 
tested. The result provides the path to the new node. The 
structure repeats until a particular condition is met. Hu-
man comprehensible rules can be derived from paths 
through the decision tree. 

Due to their structure, decision trees can be used for 
both classification and regression tasks. Thus, being gen-
erally suitable for dynamic selection of priority rules, 
they are prone to perform worse in unknown scenarios 
(Shahzad and Mebarki 2016). Other tree-based methods, 
such as Random Forest and XGBoost, based on a combi-
nation of decision trees and have forfeited a certain de-
gree of interpretability in order to achieve better accuracy 
and generalization. Nevertheless, they are increasingly 
equipped with further functionalities to improve inter-
pretability (Lundberg et al. 2020) 

The use of reinforcement learning has already 
achieved good results as a hyperheuristic in the dynamic 
selection of sequencing rules. Studies show that the in-
herent advantages of reinforcement learning, as opposed 
to supervised learning methods, are in the direct interac-
tion with the system. The agent learns the correct behav-
iors based on the observed behavior and the feedback re-
ceived. Specifically, the use case entailing the selection 
of priority rules for all machines in the system (Heger and 
Voss 2020, 2021) has shown good results. The authors 
show that based on the observed system workload and 
queues, performance can be improved by dynamically se-
lecting sequencing rules. Similarly, other authors show 
that dynamic adaptation of machine-specific rules ena-
bles significant performance improvements across differ-
ent scenarios (Shiue et al. 2018, 2020). 

This paper examines the extent to which the three 
aforementioned methods can be useful in supporting the 
selection of appropriate k-values for the ATCS sequenc-
ing rule. Specifically, the extent to which the use of com-
prehensible actions leads to a reduction in performance is 
to be examined. The interaction effects between perfor-
mance and explainability is examined in more detail in 
the context of the presented scenario. In addition, using 
the trained hyperheuristics, it is to be tested whether they 
are still able to select and dynamically adjust the k-values 
according to the system state in an unknown scenario, 
thereby achieving a more robust performance 

. 
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2 Simulation and Scenario 
The study is used and conducted in the context of a man-
ufacturing system with sequence-dependent setup times. 
Unplanned and unknown changes, such as product mix 
changes and workload fluctuations, are added to be able 
to look at a behavior of the different methods in unknown 
scenarios. The scenario is described in detail below: 

System 
Machines: 10 
Machine Groups: 5  
Structure: Flow shop 

Job  
Parameter 

Product types: 4  
Distribution of product types:  
       based on Product Mix 
Operations per Order: 10 
Distribution of Interarrival Times:  
     Poisson Process times: 1 – 99 
Distribution of Process times:  
    uniform 
Due Date: TWK Method 

Simulation  Warm Up: 2500 Jobs 
Duration of Simulation: 12500 Jobs 

KPIs Average Mean Tardiness 

Table 1: Detailed description of the flow shop scenario. 

The particular focus in this contribution is to consider the 
impact of the sequence-dependent setup times, which are 
shown below. Depending on the product mix, the propor-
tions of the four product types are different, which leads 
to different ratios of setup time. Thus, it can be assumed 
that a product mix with the first three product families 
requires significantly less setup time than a product mix 
containing all four product families. Here, the matrix in 
(2) can be read as follows: the setup time from family 1 
to family 2 is 5 minutes; the setup time from family 1 to 
family 4 is 25 minutes. With an average processing time 
of 50 minutes, the setup time ratio can have a massive 
impact on the performance of the system. 0 55 0 10 2510 255 55 5 0 2510 0  (2) 

To measure performance, the av-
erage mean tardiness and the aver-
age lead time are documented. The 
average tardiness results from the 
sum of all deviations of planned 
completion time and the actual 
completion divided by the number 
of observations.  

It should be noted that orders completed too early are 
assessed with a delay of zero. The due date, considered 
as the planned completion time, is calculated from the 
sum of the start time and the average planned processing 
time for all steps multiplied by a due date factor. The due 
date factor is selected so that a certain setup-, maintenance-
and transport-time between machines is acceptable. 

For the creation of regression models, training data is 
generated in an extensive parameter study using the dis-
crete-event simulation model. The use of the simulation 
makes it possible to determine the length and width of the 
data set itself. The generated data forms the basis for the 
knowledge-based approaches to dynamic adjustment de-
scribed later. In this case, the simulation model is availa-
ble as a training environment for reinforcement learning 
as well. 

Figure 1 describes the multiple steps of the proce-
dure; starting at the bottom center is the simulation 
model. Through the parameter variation experiment it is 
possible to examine the behavior of the performance de-
pending on different system state combinations, thus 
making it possible to create training data for the different 
regression models. 

 
Figure 2: The regression model is trained offline based  

on the simulation and utilized online after 
 training as a decision support system. 

Figure 2 shows a schematic of the dynamic adaptation 
procedure during the online application. It considers the 
performance of the system over time and under changing 
states as well as the last selection of k-values. Depending 
on the selected performance indicator, the goal is to min-
imize or maximize this performance value; in this contri-
bution, the minimization of the average tardiness is con-
sidered.  

Figure 1: Generalized behavior of the adjustment of k-value pairs with RL. 
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At defined points in time, regardless of the particular 

method being used, decision support utilizes the regres-
sion model to make a statement about the most appropri-
ate k-values for the situation to improve performance. 
The values are used for a defined period of time and re-
evaluated afterwards 

It is necessary to evaluate whether and to what degree 
the variation occurs due to the inherent stochastic uncer-
tainties of the simulation model. The simulation study 
can further evaluate how the frequency of adjustment af-
fects performance. 

A parameter analysis is performed in this context to 
find out which observations have significant influence, 
and which do not. Data pre-processing such as standard-
ization, one-hot encoding, and a combination of these are 
performed independently of the method used, but due to 
the simulation focus, their consequences are not evalu-
ated in detail. 

3 Evaluation 
For the training data set, a parameter study was per-
formed recording all possible combinations of -values 
from 1 to 10 and -values from 0.01 to 1.01 under 7 dif-
ferent workloads from 85 % to 95 % as well as 12 differ-
ent product mixes with different setup proportions.  

For each of the 9240 individual parameter combina-
tions, 5 replications were performed. The data set used 
thus comprises 46200 samples. The observations from 
the system were the average mean tardiness, average lead 
time, product mix, and average machine utilization. In 
this contribution, the k-values, machine utilization, and 
performance indicators are considered as continuous var-
iables, while the product mix is considered as a categori-
cal variable. 

In the raw data, it can be seen that product mixes per-
form differently at the same utilization rate and using the 
same static k-values, depending on the setup ratio of the 
mix, shown for two product mixes in Figure 3. A small 

-value, which is beneficial for product mixes with high 
setup ratio (e.g. [30,40,20,10]), would lead to a 30% deg-
radation in performance for product mixes with a lower 
setup ratio. In this study, a machine utilization of 85 % is 
considered. It should be mentioned that the raw data 
shows an increase of up to 5 % utilization depending on 
the different setup time proportions per product mix, for 
the same planned utilization. Further, low utilization lev-
els mean that no potential for improvement is possible. 
This situation must be examined over a number of prod-
uct mixes in order to improve performance. 

 

 
Figure 3: Based on the -values, the performance of 

product mix [30,40,20,10] (left) and product  
mix [10,70,10,10] (right) are different given  
the planned utilization of 85 %. 

In addition to the first data set with 46200 data points, a 
second data set with 13860 data points (corresponding to 
30% of the first data set) is generated. Subsequently, the 
NNs as well as the decision trees (DTs) were trained on 
both sets to be able to make a statement about the perfor-
mance with more data points. The parameters for the NNs 
as well as the DTs were determined using a grid search 
procedure 

The NN was implemented as a multi-layer perceptron 
in Python using the scikit learn library. The resulting two-
layer network with 10 neurons in the first layer and 30 
neurons in the second layer had the activation function 
"relu". In combination with the solver "adam", a mini-
batch size of 500 samples showed good results. The ini-
tial learning rate was set to 0.01. An L2 regularization 
was performed. 

The DT was implemented using scikit learn as a de-
cision tree regressor in Python. In this framework, it was 
found that using a maximum depth of 5, with at least 4 
samples per leaf led to good results. 

The RL agent was trained using the Pathmind soft-
ware-as-a-service platform with 12000 simulation runs. 
For training, the discrete-event simulation model was ex-
ported as a stand-alone Java file and trained on the plat-
form, independent of local resources for 12 hours.  
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During this process, various hyperparameter configu-

rations were automatically evaluated as part of popula-
tion-based training and the best configuration for the sce-
nario was found. Pathmind uses Ray and RLlib for train-
ing the agent. The strategy of the agent was trained by 
Proximal Policy Optimization 

As part of the evaluation, the three methods are tested 
in online use in the context of the event discrete simula-
tion. This involves documenting performance for a 
known scenario with a static workload and a known prod-
uct mix. In the following, the scenario is a workload of 
85% and product mix [30,40,20,10] from above. Figure 4 
shows an example of the agent's behavior trained with re-
inforcement learning. As seen above, a low -value is 
beneficial for the product mix [30,40,20,10]. It can be 
clearly seen that when the average delay (left Y-axis) in 
the system varies over time (X-axis), the used -values 
of the ATCS rule (right Y-axis) is adjusted. 

Over 30 replications, for a static utilization and for a 
known product mix, dynamic adjustment of k-values 
with RL has a positive impact but is not significantly dif-
ferent from static selection of k-values.  

Of particular interest (see Figure 5) is the poor perfor-
mance of the NNs; it is reasonable to assume that the dy-
namic selection and adjustment of the rules by the NNs 
has a negative impact on performance in the static sce-
nario (Priore et al. 2006) 

In the second evaluation scenario for the dynamic ad-
justment, a static utilization with changing product mixes 
is evaluated. In the scenario, a new product mix (in this 
case product mix [10,70,10,10]) is considered in the sys-
tem over ¼ of the simulation time. It can be seen in Fig-
ure 6 that the selection of good static k-values already 
leads to good performance. In comparison, the DTs, the 
NNs as well as the RL agent bring an additional signifi-
cant improvement of up to 15 %. Additionally, the RL 
agent is still 3 % better than the DTs. In contrast to the 
static scenario, the NN can show its advantages regarding 
generalizability of behavior. The comparable perfor-
mance of RL and NN is understandable since RL uses 
NNs to estimate the reward. 

Over the evaluation in both scenarios, it is shown that 
DTs can reproduce known system behavior very well and 
can describe dynamic behavior to some extent.  

 
Figure 4: The RL-agent adjusts the -value based on the system status dynamically. 

 

 
Figure 5: The direct comparison shows the performance with static as well as dynamically adjusted k-values by the DT, 

NN and the RL approach in a known scenario. 
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The use of NNs and RL is especially advantageous in sce-
narios with unknown behavior and can lead to an im-
provement in performance of up to 15%. 

4 Summary and Outlook 
Dynamic adaptation of priority rules using various ma-
chine learning methods can lead to improved perfor-
mance. In this paper, three methods for adjusting the  
k-values of the ATCS rule were trained and evaluated 
over two scenarios. A data set which includes the rela-
tionships between product mix, k-values, and system uti-
lization was created using a flow shop manufacturing en-
vironment and an extensive parameter study. This was 
then used as the training basis for DT and NN, while the 
discrete-event model was used as the training environ-
ment for the RL agent.  

The comparison within the static scenario shows that 
DT and RL can reproduce the performance of the static 
k-values. During training, it was shown that the use of 
DTs can help in making qualitative statements regarding 
performance. In the dynamic scenario, it was shown that 
all three methods can improve the performance. On par, 
RL and NN can reduce average delay by 15% and com-
pensate for unplanned product mix changes. In the next 
step, a deep and detailed analysis of the dynamic adjust-
ment over multiple product mixes and unknown scenar-
ios will be performed 
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