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Abstract. The installation of offshore wind farms con-
stitutes a highly weather-dependent process. Despite
this dynamic, practice and research generally assume
fixed resupply cycles to deliver components from their
production sites to the installation’s base port, result-
ing in high storage requirements. This article proposes
a cascading discrete-event simulation framework com-
bined with offline mathematical optimizations to decide
demand-driven on suitable resupply cycle from a pool of
routes. This approach combines the advantages of both
methods by allowing high flexibility to cope with weather
dynamics while reducing the search space to a few opti-
mal alternatives. The evaluation uses two real-world use
cases. It demonstrates that selecting cycles based on
estimated weather developments reduces the required
base port storage capacity. Moreover, in some cases it
additionally maintains lower capacity levels after an ini-
tial ramp-up phase.

Introduction
Over the last years, wind energy has developed into a

primary green, sustainable energy source. Since 2010

the installed capacity of offshore wind farms has in-

creased exponentially, from 2.9 Gigawatts to 35 Gi-

gawatts in 2020 [14]. Moreover, over the last years,

most countries increased their targeted shares of renew-

able energy or moved forward their targeted dates [14].

Compared to their onshore counterparts, offshore wind

farms allow for higher capacities due to larger accessi-

ble areas at the open sea and higher wind speeds. Nev-

ertheless, the same advantages result in additional chal-

lenges for installing such wind farms, e.g., due to harder

to reach installation sites, stronger winds and weather

dynamics, and more expensive resources [16].

High wind speed poses a challenge for installation

operations at the open sea. Due to the sheer size of tur-

bines, installations require crane operations in approx-

imately 100 meters of height. Thereby, high waves or

wind speeds result in sways of several meters, rendering

installations unsafe for the crew, components, or even

the vessel and crane. Consequently, installation opera-

tions have defined limits considering these parameters.

Rippel et al. (2019) [16] provide an overview over such

limits assumed in the literature. Generally, weather con-

ditions at the open sea tend to change quickly due to

the large open area. In contrast, planners can only rely

on forecasts or historical records and their experience

when planning installations, which introduces high un-

certainties, especially during the installation’s operative

phase. Literature attributes between 15% and 30% of a

wind farm’s overall costs to logistics costs during the in-

stallation resulting from this uncertainty and the costly

resources involved in installations (e.g., [5, 11]).

Most of the literature that considers offshore instal-

lations focuses on efficient scheduling of vessels, fleet

mixes, or viable project start dates. Only a few ap-

proaches emerged over the last years that focus on the

operative phase and include forecasts in their planning.

Very few contributions include port-side resources, like

storage areas, loading bay availability, or heavy-duty

handling equipment. Nevertheless, studies show ongo-

ing trends to increasing numbers of installation, refur-
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bishing or decommissioning projects with higher num-

bers of turbines [3], paired trends to larger and heavier

turbines [22], which could quickly lead to bottle necks

within the base port availability [12].

This article proposes a cascading simulation frame-

work to support operations in determining suitable re-

supply cycles for components to adapt these cycles to

the current, predicted needs at the base port. Therefore,

the framework applies an online simulation as digital

twin of the installation process. At each decision point,

i.e., when the transport vessel starts a new resupply

cycle, the digital twin evaluates some previously opti-

mized alternatives given the current state of the installa-

tion and current forecasts as nested simulations. As the

framework allows each of these child-simulation runs to

apply the same decision process, it denotes each set of

alternatives as a cascade. In general, the approach aims

to reduce the required base port storage capacity and

initial inventory level to reduce costs and save spaces

for concurrent projects.

This article is an extended version of a contribu-

tion that was presented at the 2021 ASIM conference

"Simulation in Produktion und Logistik" [15]. In ex-

tension, this article provides a detailed description of

the framework, proposes a different method to select vi-

able weather data for the nested child simulations, and

extends the discussion of the approach’s advantages and

disadvantages by adding a second real-world use case,

modeling the installation of the wind farm "Hohe See".

1 Methods for Offshore Wind
Farm Installations

Compared to other areas in the offshore sector, only

a few articles consider installing offshore wind farms

[21]. Most articles deal with optimizing or evaluating

the installation process [16], e.g., focusing on ways to

simulate weather conditions [11], different installation

concepts [21], or fleet mixes [1]. Other authors provide

models to schedule the commissioning of vessels [8] or

operations in various resolutions, e.g., [7, 20].

Even fewer articles explicitly include port-side re-

sources like storage spaces or the resupply of compo-

nents. For example, Beinke et al. (2017) [2] evalu-

ated sharing heavy-lift vessels between several instal-

lation projects to reduce downtime due to bad weather

conditions. Newer works demonstrate an increasing de-

mand for jack-up vessels and, in consequence, port-side

resources, as first wind farms reach the end of their

life and require refurbishing or decommissioning [3].

Oelker et al. (2020) [12] evaluate available heavy-duty

storage areas at the base port in Eemshaven using a sim-

ulation study. The study shows that the port’s capacity

will reach its limits soon if current trends continue. Rip-

pel et al. (2020) [18] describe a mathematical model to

determine optimal resupply cycles based on their effi-

ciency that will be introduced later in this article.

In conclusion, the current state of the art mainly fo-

cuses on the actual installation and generally assumes

that the base port offers sufficient components. Only a

few of the presented models consider the resupply, but

all assume a fixed and reliable resupply of components

in defined intervals.

2 Process Description

Different installation concepts for offshore wind farms

exist in the literature and practice, ranging from the so-

called conventional concept, where all assemblies take

place at the installation site, over preassembly concepts

to floater concepts, where all assemblies take place in

the base port. Practice and research mainly apply the

conventional concept, depicted in figure 1. While this

section shortly summarizes this concept, a more de-

tailed description can, e.g., be found in [13, 21].

Production Port
Nacelle

Production Port
Tower

Production Port
Blades

Base Port
Storage

Installation Site
Construction

Heavy-Lift Vessel

Installation Vessel

Figure 1: Conventional installation concept (c.f. [17]).

In this concept, a heavy-lift vessel travels between

the components’ production ports and the base port,

which buffers the components for the installation. An

installation / jack-up vessel loads sets of components

and travels to the installation site to perform the assem-

bly. Jack-up vessels possess retractable pillars to mount

themselves at the installation site, effectively punctur-
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ing the sea bed to steady themselves against high waves.

While this process allows mitigating the influence of

higher waves, it results in the vessel’s need to remain

stationary until it finishes installing a turbine. Addi-

tional jack-up operations close to an already visited lo-

cation can easily damage already installed foundations

or even the vessel itself due to the already loosened sea

bed. Consequently, installation vessels always need to

load complete sets, i.e., all tower segments, the nacelle

and hub, and all blades required for a turbine. Their

capacity in terms of deck area and maximum payload

restrict the number of sets. Most vessels currently avail-

able on the market can handle four sets.

Accordingly, installation operations require com-

plete sets to be available at the base port to start, which,

in turn, requires careful planning of the resupply of

components. Therefore, practice and research assume

that the heavy-lift vessel follows a predefined resupply

cycle, visiting the production ports in a given sequence.

At the end of each cycle, a defined number of complete

sets become available at the base port. For example,

such a cycle could consist of two trips: the first trip

fetches two towers while the second trip visits the other

two ports and fetches two nacelles and six blades. In

this example, the first trip does not allow further instal-

lation operations as it is not possible to install only the

towers. Nevertheless, after the second trip, two addi-

tional installation operations become available.

Generally, project planners decide on a single in-

stallation cycle during the planning stage of installa-

tion projects, which the heavy-lift vessel repeats until

it finishes delivering all sets. On the one hand, this

approach ensures the reliable delivery of components.

On the other hand, this approach does not consider the

current situation during the project execution. The ac-

tual demand varies depending on the current weather

situation and forecasts. For example, fixed cycles can

quickly deplete the storage when facing a good weather

period. In contrast, bad weather periods heavily reduce

the demand and can result in inventory overflows, re-

quiring expensive additional storage areas or disrupting

the supply chain. In practice, planners tend to include

safety margins to the base port capacity and initial in-

ventory levels to circumvent these problems.

Nevertheless, both examples can be faced by ad-

justing the resupply cycle according to the predicted

demand. For example, longer cycles can bridge bad

weather periods by slowing down the delivery. Accord-

ingly, shorter cycles provide lower amounts faster to the

base port to fully exploit good weather periods.

3 Demand-driven Resupply by
Cascading Simulation and
Optimization

This section introduces the cascading simulation frame-

work used to select viable resupply cycles based on the

current state of the installation process. The framework

relies on a set of optimal resupply cycles that differ in

duration and number of delivered sets but provide an

optimal cycle considering the number of allowed round-

trips between one or more production ports and the base

port. At each decision point, i.e., before a new cycle

starts, the framework initializes several nested simula-

tions, each evaluating the influence of an alternative cy-

cle on the overall installation project using aggregates

of historical weather records as depicted in figure 2.

Please refer to, e.g., Kindler (2004) [9] for more infor-

mation on nested simulation in general.
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Figure 2: Schema of the cascading simulation concept using
three alternatives and two cascades. Dotted lines
represent decision points within each simulation.

This article uses the framework’s digital twin (on-

line simulation) to simulate installation projects using

real-world scenarios and historical weather records to

be as close to real-world applications as possible. Over-

all the framework consists of three major components:

first, the optimization of resupply cycles, second the

simulation model used for online and nested offline

simulations; and third, a simulation manager to instan-

tiate the nested child simulations and evaluate their re-

sults. While the optimization model supplies inputs to
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the framework, the later components, i.e., the simula-

tion model(s) and the manager, interact directly during

the simulation run as indicated in Figure 3.

Java

Manager

Simulation

ModelInitializes Simulation
JSON/Snapshot

Request Decision
RPC Call: List of Alternatives

� Initialize Children

� Wait for Reply
� Evaluate best Alternative

Modify Parameters
JAVA Reflections

...

Figure 3: Interaction between the manager and the

simulation components.

Once the manager starts, it initializes and runs its

simulation model using a definition of the current state

in a JSON file and, if it is a nested simulation, an addi-

tional copy of the parents state using AnyLogic’s Snap-

shot feature. While both files contain partly redundant

information, the JSON state contains additional infor-

mation, e.g., which set of historical data a nested simu-

lation should use or if the simulation could inquire the

manager about decisions (given by the number of al-

lowed cascades). Moreover, the manager registers itself

within the simulation model as an external listener, al-

lowing the simulation to call specified interfaces, e.g.,

when finishing or requesting a decision.

After initialization, the simulation model starts and

proceeds until it reaches a decision point. It generates a

list of alternative decisions, for example, by looking up

already stored resupply cycles, pauses itself, and pro-

vides the alternatives to its manager by requesting a de-

cision.

Upon receiving a request, the manager spawns ad-

ditional instances of itself, providing one of the alter-

natives and a Snapshot of its simulation’s state to each

child manager. Each of these new managers then fol-

lows the same procedure. After concluding their sim-

ulation runs, the child managers report their results to

their parent, which evaluates their results, and decides

on the best alternative. Finally, it directly modifies

its simulation using JAVA Reflections and instructs the

model to resume simulation with the new settings. This

process repeats for each decision point until the online

simulation finishes.

The manager evaluates several characteristics of its

child simulations’ results to select the best alternative.

First, it selects those alternatives that resulted in the

shortest project duration as a prolonged time indicates

missing inventory. Second, it selects those instances

that would result in the lowest added storage capacity.

If several instances remain, the manager selects the al-

ternative cycle that delivers the most components as tie-

breaker.

3.1 Optimization of Resupply Routes

The framework’s primary objective in this article is se-

lecting viable resupply cycles based on the current state

of the installation process. This article defines a re-

supply cycle by the round-trips that the heavy-lift ves-

sel takes, the number of delivered sets by the end of

the cycle, and its duration. Thereby, the efficiency of

a cycle depends on the number of allowed round-trips

N, the geographical location of the ports, i.e., traveling

times, and the vessel’s capacity in terms of deck area

and payload, i.e., the number of components that it can

transport in one round-trip. Figure 4 shows the possi-

ble round-trips for the offshore domain when assuming

symmetric traveling times.

1 2 3

4 5 6

7 8

Figure 4: Possible round-trips for three production ports

(top) and one base port (bottom).

It shows a total of eight possible round-trips when

considering one base port and three production ports

for the towers, blades, and nacelles. Consequently, the

search space for creating a set of alternative resupply
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cycles that allow different numbers of round-trips is

given as ∑N
n=1 8n. For example, assuming the frame-

work wanted to evaluate the best alternative for allow-

ing one to ten round-trips, the search space would al-

ready comprise 1.2 billion possible combinations. As-

suming that evaluating a single alternative would take

about one second, the sheer number of combinations

would result in computational times of approximately

13.888 days. It has to be noted that this example only

includes combinations of visited ports and completely

neglects different loading scenarios at each port. In con-

clusion, the framework requires additional methods to

reduce this search space.

Instead of applying meta-heuristics or other search-

based techniques that still need to search large parts of

the search space, the framework relies on mathematical

optimization to generate optimal alternatives as soon as

the supply network, i.e. the locations of the ports and

the heavy-lift vessel are defined. The framework uses

the model proposed in Rippel et al. (2020) [18] to derive

a set of optimized alternatives for each allowed number

of round-trips.

In general, the creation of a resupply cycle con-

stitutes a combined routing (traveling-salesmen) and

knapsack problem to determine (a) which ports to visit

in each round-trip and (b) which components to load

at each visited port. The problem aims to maximize

the yield while minimizing the traveling-, loading-, and

possibly setup times. The model exploits the small size

of the transport network by enumerating possible routes

for each round-trip (one to eight as shown in Figure 4)).

It then calculates the traveling times for each of these

routes using the well-established haversine formulae,

solving a number of traveling salesman problems. The

actual optimization model is then given as a customized

multi-periodic knapsack formulation to maximize the

number of delivered sets over N round-trips (periods).

The model tracks visited ports in each round-trip as a

binary vector, using a standard binary encoding to map

these visits to the index of the precalculated traveling

times. In addition, the model includes loading and un-

loading and setup times, e.g., for installing or removing

transport frames on the heavy-lift vessel.

The framework applies this model to generate alter-

native cycles for one to N round-trips before the sim-

ulation run starts. While this offline optimization as-

sumes that transport processes are mainly unaffected

by weather conditions, planners could choose a safety

margin to the expected cycle duration or even earlier, to

the corresponding loading and unloading times. Never-

theless, most operations involved in the resupply show

comparably high weather limits, which renders the as-

sumption quite realistic. As a result of applying this

offline optimization, the framework only evaluates N
alternatives at each decision point instead of possibly

millions of combinations.

3.2 Simulation Model

Both the online and nested child simulation runs use

the same underlying model extended from Rippel et al.

(2019) [19] but use different weather data. The online

simulation uses actual, hourly weather records from the

simulated period. Child simulations only have access

to historical data, usually records of years prior to the

simulation period.

The simulation model has been implemented in

AnyLogic 8.7.9 professional. Figure 5 shows a screen-

shot of the simulation model. It contains agents for all

vessels (installation and heavy-lift transport), the instal-

lation site, and the respective base and production ports.

Therefore, ports and the installation site mainly manage

their data, e.g., current storage levels or the number of

installed turbines. In contrast, vessel agents can decide

their following actions, e.g., creating and selecting in-

stallation cycles using weather forecasts. In the context

of this article, the model has been modified for heavy-

lift vessels. Heavy-lift vessels can access all predefined

alternatives instead of only applying a single predefined

resupply cycle. They can inquire the external frame-

work which of these to choose for the next iteration.

In general, the model contains various functions to es-

timate the duration of operations given a weather fore-

cast and the operations’ weather limits as proposed in

the literature [17].

As noted, child simulations only access historical

records as the framework cannot know how the weather

will be in practical applications, even if this article only

simulates historical projects. While the previous article

proposed to use 20 years of historical weather data, i.e.,

mean values from 1979 to 1999 when simulating the

year 2000 for the child simulations, this article proposes

to search for similar years within the available data set

to find better matches. The approach was modeled

as a simplified version of known K-Nearest Neighbor

Searches known in time series prediction (e.g., [10]).

Therefore, the framework selects three months prior to

the simulated project and calculates the duration of in-

stallation operations within this period. Afterward, it
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Figure 5: Simulation model implemented in AnyLogic 8.7.

iterates through the database, selecting each year Y s in

the database and a viable number of historical years

Y N ∈ {0,1,2,5,10,20} and calculates the mean value

and hourly standard deviation. The framework again es-

timates the duration of installation operations using the

Markov-Chain-based approach described in [17] using

these values as input. Finally, it calculates the Pearson-

Correlation Coefficient between these sets and the last

three months to decide for a constellation that matches

the current data as good as possible. Earlier tests show

that this approach represents the expected weather data

better in most cases than just picking the last 20 years

as originally proposed in [15]. In the following, the first

use case still chooses to pick the last 20 years as these

still show the highest correlation. In contrast, the sec-

ond use case chooses a data set comprising five histori-

cal years from 1982 as the best match.

In addition to the aggregated historical data, parent

simulations can provide actual weather forecasts to their

nested child simulations, usually spanning a short pe-

riod of 2-3 weeks. If provided, the simulation model

interpolates between the forecast and its weather data

using the expected uncertainty of the forecasts. This

model uses data taken from the homepage of the Ger-

man Weather Foundation [4], stating that the uncer-

tainty of forecasts starts at 0.0 for the first hour (mea-

surement), increases to approximately 0.25 at one week,

0.65 at two weeks, and rises to 0.95 at three weeks. In-

terpolating these values as u(t) the model calculates the

current weather conditions as function f over the time

in hours t and the two vectors of weather conditions for

historical data dh and forecast data dc: f (t, dc, dh) =
(1−u(t)) ·dc +u(t) ·dh.

4 Experimental Setup

This article applies the cascading simulation framework

to two different use cases. Both use cases model real-

world installation projects in Germany’s Northern Sea

with different characteristics considering the projects’

dimensions, supply network, and applied vessels.

Data for the first use case has been empirically col-

lected during several research projects, resulting in in-

depth knowledge, e.g., about processing times, weather

restrictions, loading scenarios, resupply cycles, or in-

stallation vessels (IV). Beinke et al. (2017) [2] first

published this use case. Accordingly, this experiment

applies the same weather limits. Apart from these

data, the use case relies on averaged characteristics for

the heavy-lift transport vessels (HLV) in terms of their

speed, deck area, and payload, as presented in the lit-

erature [18]. Comparing the results of the optimiza-

tion model introduced earlier with the resupply cycles

used in the real-world scenario shows a close to perfect

match between the results. This match indicates that

the vessel used had similar characteristics [18]. Table

1 summarizes the relevant parameters for this first use

case.

Parameter Tower Blade Nacelle

Project Start April 1st 2000

Base Port Eemshaven

Installation Site Northern Sea

Number of Turbines 50

Number of IVs 1

HLV: Deck Area / Pay-

load

2646m2 / 8900 t

HLV: Avg. Speed 9.5 knots

Production Port Cux-

haven

Bremer-

haven

Bremer-

haven

Loading / Unloading /

Setup Time

2 h / 1.2

h / 0 h

8 h /4.8

h / 0 h

10 h / 6

h / 0 h

Weight 600 t 240 t 500 t

Req. Space 650 m2 300 m2 263 m2

Table 1: Parameters of the first use case.

The second use case represents the installation for

the wind farm "Hohe See" in Germany’s Northern Sea.

The use case relies on publicly available data about used

vessels, the supply network, or the wind farm location,

e.g., [6]. While keeping the same weather limits, pro-
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cess durations, and heavy-lift vessel characteristics, this

use case features a much larger supply network, more

turbines to install, and a second installation vessel as

shown in Table 2.

Parameter Tower Blade Nacelle

Project Start April 1st 2019

Base Port Esbjerg

Installation Site Wind Farm "Hohe See"

Number of Turbines 71

Number of IVs Blue Tern, Brave Tern

Production Port Rotter-

damm

Aalborg Cux-

haven

Table 2:Modified parameters of the second use case.

Both use cases use the same data set for weather

data, containing hourly measurements from 1956 to

2019 within a few kilometers of both installation sites.

As noted before, the nested child simulations use aggre-

gated weather data for 1979-1999 (first use case) and

1977-1982 (second use case).

The simulation tracks the inventory levels of the on-

line simulation to evaluate the efficiency of the cascad-

ing framework compared to an optimized fixed cycle.

Accordingly, the first use case applies a cycle consist-

ing of four round-trips that deliver eight sets in 312

hours. This cycle has also been applied in the real-world

project and has been proven to be the most efficient cy-

cle possible [18]. As the applied cycle is unknown for

the second use case, the experiment first applied the de-

scribed optimization to determine the most efficient cy-

cle. In this use case, again, a resupply cycle using four

round-trips, delivering eight sets over 408 hours, pro-

vides the lowest time per set.

The experiment assumes an infinite storage capac-

ity but tracks how much inventory was used during the

simulation to determine the required capacity. The ex-

periment varies the initial inventory level between 0 and

20 in steps of two for the first use case and between 0

and 50 in steps of 5 for the second use case to deter-

mine the lowest possible initial inventory for the fixed

cycle and cascading framework. Finally, it tracks the

actual inventory levels throughout the simulation to en-

able comparisons in the behavior of both approaches.

5 Results and Discussion

Figure 6 shows the results for the first use case. The

top graph shows the project duration for different initial

inventory levels. The results show that the cascading

concept achieves an uninterrupted installation process

starting at an initial inventory level of ten sets. In con-

trast, the fixed cycle requires at least twelve sets to avoid

delays due to missing inventory. The graph in the mid-

dle shows the observed maximum inventory. Both ap-

proaches require a capacity equal to this level, starting

from an initial inventory of eight sets. Finally, the low-

est graph shows the current inventory level over time.

The graph shows no relevant differences, resulting in

similar average inventory levels.
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Figure 6: Results of the first use case.

Figure 7 shows the same graphs for the second use

case. Considering the project duration, the second use

case shows the same characteristic as the first use case:

the cascading approach achieves an uninterrupted in-

stallation at an initial inventory level of 30 sets in-

stead of 35 sets for the fixed cycle. Similarly, both

approaches’ required capacity is equal (second graph).

In contrast to the first use case, the last graph shows
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interesting behavior. The cascading approach quickly

reduces the initial inventory level, maintaining a lower

average inventory level until the end of the project.
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Figure 7: Results of the second use case.

6 Conclusion and Future Work
This article presents a framework to combine cascad-

ing simulation with offline mathematical optimization

to choose viable resupply cycles for offshore instal-

lation projects based on the current state of the pro-

cess, weather forecasts, and expected weather condi-

tions. Compared to purely heuristic or search-based ap-

proaches, this combination limits the search space dras-

tically, rendering it a viable alternative in practical ap-

plications. The same accounts for purely mathematical

approaches. Combining the scheduling of vessels with

the routing and knapsack problems involved with the

resupply would probably result in a problem with vast

amounts of constraints, probably unsolvable in a realis-

tic context.

The results show that the approach reduces the re-

quired initial inventory level compared to optimized

fixed resupply cycles. As the required capacity in-

creases linearly with the initial level, the framework

can provide a tool to reduce the strain on port-side re-

sources. Moreover, the second use case shows that the

framework can, in some cases, result in a heavy reduc-

tion of the average inventory level at the beginning of

a project. This behavior can be exploited to free up re-

served capacity. The advantage of the cascading con-

cept also shows in its transparency. At each decision

point, the framework offers its current decision. In the

second use case, the framework decides for a long re-

supply cycle initially, resulting in the drop of the av-

erage inventory level. Moreover, planners could also

evaluate the respective nested child simulation to pre-

dict the remaining project’s behavior.

Future work will further investigate this effect and

determine which constellations result in such behavior.

Moreover, future work will investigate other applica-

tions for the cascading framework in the offshore area

and other simulation-based optimizations. The current

implementation allows easy integration of the cascad-

ing framework to various models implemented in Any-

Logic by providing suitable interfaces to register the

manager class and the means to provide it with decision

alternatives.
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