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Abstract.  The shift in the mobility sector towards electric 
vehicles is responsible for a growth in the market demand 
for lithium-ion batteries. To follow this trend, the current 
200 GWh global production capacity of lithium-ion batter-
ies will present an annual increase of up to 300 GWh in 
the next years. Characterized by an energy-intensive pro-
cess chain and high material costs, battery production is 
sensitive to production scrap rate. Current works on en-
ergy and cost assessment in battery production consider 
scrap rates based on static values derived from historical 
production data. Thus, there is a lack of works that dy-
namically analyse the influence of different scrap rates on 
the process chain, e.g. considering machine states and uti-
lisation capacity. To tackle this challenge and contribute to 
more sustainable and competitive battery production, 
this work presents a simulation-based methodology to as-
sess the indirect and direct energy demand and costs as-
sociated with production scrap. 

Introduction 
Lithium-ion batteries offer a wide range of applications, 
with the mobility sector accounting for more than 60% of 
the 200 GWh global demand in 2019. To follow the elec-
tromobility growth, studies predict that the global capac-
ity of production of lithium-ion batteries will present an 
annual increase of up to 300 GWh in the next years [1]. 

Due to its energy-intensive process chain, manufac-
turing is responsible for up to 45% of the battery cradle-
to-gate environmental impacts [2]. Besides the environ-
mental impact, production is also the main cost driver. 
Here material is a decisive aspect, accounting for up to 
70% of the costs of a single battery [3]. Therefore, a more 
environmentally sustainable and cost-competitive battery 
cell production depends on material and energy-efficient 
production. The reduction of production scrap, i.e. mate-
rial waste intrinsic to the process or resultant from mate-
rial flaws, increases the material efficiency and reduces 
the production costs. However, reducing the scrap close 
to zero requires sophisticated strategies and significant 
investments [4].  

For large-scale production, production scrap rates 
vary from 5 to 10% [2]. Different works in the battery 
production context with a focus on energy efficiency [5–
7] and cost estimation [8–10] consider production scrap 
in their models and calculations. Nevertheless, there is a 
lack of works that dynamically analyse the influence of 
different scrap rates on the process chain, e.g. consider-
ing machine states and utilisation capacity. Simulation-
based approaches represent a well-established tool for 
understanding complex relationships and dynamics of 
process chains and have already been applied in the anal-
ysis of material and energy flows as well as production 
improvements [6,11].  

Against this background, this work proposes a com-
bined discrete event and agent-based simulation ap-
proach to (i) dynamically study the effect of different 
scrap rates on a process chain level and (ii) provide iden-
tification of critical processes from energetic and eco-
nomic perspectives. 
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1 Theoretical Background 

1.1 Lithium-Ion Battery Production 
The battery cell production is characterized by a rigidly 
interlinked process chain with numerous heterogeneous 
process steps. In general, the process chain can be di-
vided into electrode production, cell production, and cell 
conditioning. However, slight variations might occur in 
the battery process chain depending on the respective 
process technology and the battery cell design, e.g. 
pouch, cylindrical or prismatic. In electrode production, 
anodes and cathodes are produced in batch and continu-
ous processes, located in separate production lines to 
avoid contamination [9].  

After a dry and wet mixing process, the respective 
material suspension is coated and subsequently dried to 
produce a composite structure. Afterwards, anode and 
cathode coils are calendered to reduce their porosity and 
slit to width and length before they enter the dry room for 
cell production, characterized by discrete processes. 
First, the coils are further cut into single electrode sheets. 
For pouch cells, the individual electrode sheets are 
stacked together with a separator. The electrode-separa-
tor assembly is contacted internally and afterwards in-
serted into a pouch bag housing. The housing is then 
filled with electrolyte and subsequently sealed. In cell 
conditioning, the formation and aging of the battery cells 
are conducted [3]. 

Scrap rate information in the literature is diverse and 
limited, usually derived from input-output rates and his-
torical data. Based on previous publications, Drachenfels 
et al. (2021) present variations in scrap rates according to 
production scales, e.g. 5 to 20% for small and 5 to 10% 
for large factories [2]. Nelson et al. (2019) present pro-
cess-specific scrap rates, varying from 1 to 8% according 
to the process characteristics [8]. Schünemann (2015) pro-
poses even lower rates, e.g. 1% for the mixing process and 
0.2% for stacking [9]. Production scrap rate has also a ma-
jor influence on production energy demand and costs. 

 
Energetic Perspective.  The battery cell production 
requires a significant amount of electrical energy, espe-
cially caused by its energy-intensive processes, e.g. coat-
ing/drying, calendering, and formation [5]. In addition, 
the technical building services (TBS), which provide the 
necessary environmental conditions, also contribute to a 
significant share of the total energy demand [12].  
 

The literature reports large variations in energy de-
mand per energy storage capacity at an industrial scale, 
ranging from 47 to 162 Wh per Wh [7]. These variations 
can be explained by the production scale, the complex 
and dynamic combination of continuous and discrete pro-
cesses as well as the selected process parameters and 
boundary conditions [2,13].  

The assessment of energy considering scrap rates has 
been shown in different works. Thomitzek et al. (2019a) 
present a material and energy flow analysis based on in-
put-output ratios and the measured energy demand [5]. 
Weeber et al. (2020) propose a simulation on process 
chain and process levels to assess the overall energy de-
mand [6]. Wessel et al. (2021) provide an analysis of en-
ergy demand due to scrap for a pilot line based on pro-
duction data [12]. The results show critical energy-inten-
sive processes when analysing energy demand associated 
with scrap. Although the scrap rate has been considered 
in many works, it was usually limited to static average 
values based on production data. Thus, it is necessary to 
dynamically analyse the influence of scrap rates in bat-
tery production on the energy demand.   
 
Economic Perspective. Material costs represent the 
largest share of battery production costs. Kwade et al. 
(2018) present in a cost breakdown that 74.9% of the 
costs are caused by material and 3.1% by energy demand 
[3]. Duffner et al. (2021) show the share of the various 
costs for an optimization scenario with materials (77%), 
machine depreciation (8%), production scrap (6%), and 
energy (3%) being the largest ones [14]. Due to the im-
portance of material efficiency for more competitive pro-
duction, production scrap has been considered in differ-
ent cost estimation models. A simulation-based approach 
to assess the importance of economy of scale on produc-
tion costs is presented by Mauler et al. (2021) which con-
siders production bottlenecks and end-of-line scrap rates 
[10]. Concerning process-specific costs, Kwade et al. 
(2018) declare that processes further down the process 
chain are more cost-sensitive since they embody the 
value added by the previous processes [3].  

Duffner et al. (2021), on the other hand, mention an 
electrode production process (coating) as critical [14]. 
The review on cost models presented by Duffner et al. 
(2020) lists many works which consider process-specific 
parameters in their estimations [15].  
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However, none of them dynamically analyses the process 
chain when defining scrap and energy-related costs. 
Based on the relevance of the material efficiency to the 
battery cell costs, it is fundamental to consider the eco-
nomic influence of different scrap rates. 

1.2 Simulation Approaches for Process 
Chain Analysis 

Simulation is a consolidated approach to analyse differ-
ent production scenarios and process chain performance 
[11]. In the battery production context, it has also been 
identified as an effective tool to assess and analyse en-
ergy demand for different production and machine con-
figurations [6,13]. Discrete event simulation (DE) ena-
bles a better understanding and reproduction of material 
and energy flows within the production as well as pro-
vides insights on dependencies between processes. 
Agent-based simulation (AB) enables to describe ele-
ments, e.g. machines or products as a unique agent, study 
their interactions, and store specific data. The use of DE 
and/or AB to analyse production throughput, machine 
availability, and process-specific energy demand in the 
battery context was already proposed by different works 
[6,11,13]. When considered, scrap rate is described as a 
process characteristic based on static data to support anal-
ysis of input and output flows between processes.  

 

Therefore, there is a lack of work with 
focus on the production scrap rate and 
its influence on the process chain. 

2 Methodology 
A simulation-based methodology was 
developed to study the influence of 
different production scrap rates on the 
process chain dynamics with a focus 
on energetic and economic perspec-
tives, as described in Figure 1. 

2.1 Hybrid Simulation 
The first methodology part is a py-
thon-programmed hybrid simulation 
that combines DE and AB approa-
ches. The focus of the DE is to repro-
duce the material and energy flows 
along the process chain, consisting of 
the following elements: machine, pro-
cess, and buffer.  

A process can be executed by more than one machine and 
a machine can be assigned to more than one process. In 
addition, it is possible to have buffers to store finished 
parts. Otherwise, the finished part is temporarily stored 
in the machine, until it is taken to the next process.  

A machine presents five states: off, ramp-up, idle, 
processing, and failure. Off is the machine state either at 
the beginning of the simulation or after breakdowns. The 
ramp-up state starts after the machine is switched on until 
it is ready to produce. A machine is in idle state before 
processing, i.e. waiting for input material and machine 
availability. The processing state represents the produc-
tion itself and, in some cases, the storage of finished 
parts. Lastly, a machine may break during processing. 
Average power consumption and duration of each ma-
chine state are inputs defined by the user. An overview 
of the conditions for state changes and power consump-
tion over time are shown in Figure 2. 

The conditions for each state change are represented 
in Figure 2a. With exception of the off state, all state 
changes are triggered by an event. Ramp-up and failure 
events are time-regulated, based on the user inputs re-
garding the average and variation of the process duration. 
The processing state is time-regulated and additionally 
considers the storage of finished materials. The idle state 
is controlled by two events: input and machine availability. 

 
Figure 1: Simulation-based methodology to assess the effects of  

production scrap on the process chain. 
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Figure 2: (a) Machine state chart and (b) machine energy 

profile based on the duration and average 
power consumption of the different states. 

The last condition is especially relevant for machines as-
sociated with more than one process. The timestamp of 
changes in the machine states as well as power consump-
tion values result in the energy profile shown in Figure 2b. 

The AB simulation focuses on the agents, e.g. slurry 
batches, electrodes, and battery cell.  

During the simulation, agent-specific information re-
garding the process (e.g. timestamp and energy demand) 
and the material (e.g. input, output, and scrap ratios) is 
stored. The interaction between agents is achieved by the 
possibility to combine them. For example, a battery cell 
contains various cathodes, these cathodes originate from 
the same slurry batch.  

The agents are either located in a buffer or a machine, 
which provides the integration of both DE and AB ap-
proaches. A timestamp is stored whenever a state change 
in the DE triggers a change in the agent location change. 
Further process and material-specific data, e.g. scrap and 
output amount as well as energy demand are also stored 
within each agent.  

The integration of both simulation approaches pro-
vides knowledge regarding the conditions under which 
each agent is produced and the associated energy de-
mand. The main program functions responsible for this 
integration are described in Figure 3. 

Scheduler is one of the main functions, responsible 
for initialising the machines at the simulation start. It is 
also called before and after processing to check the ma-
chine and input availability. The acquisition of input ma-
terial and storage of finished parts are executed by the 
inventory_get and inventory_put functions. These func-
tions are based on the Python package SimPy which en-
ables an allocation of materials in a virtual container and 
provides, for example, the possibility to wait until the 
material is available.  

Lastly, the functions agent_get, agent_put, and 
agent_update support the AB simulation by managing 
the creation and location of agents as well as data storage. 

 

Figure 3: Program main functions for the DE and AB simulation approaches. 
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2.2 Assessment of Production Scrap 
The simulation results are used to assess the en-
ergetic and economic influences of different 
production scrap rates, considering direct and 
indirect parameters. Different power consump-
tion values are associated with the machine 
states ramp-up, idle, and processing. Energy de-
mand during processing results from the aver-
age consumption and process duration, and 
may, therefore, be directly associated with a 
scrap agent. As consequence, energy demand during the 
processing state is classified as direct parameter. Param-
eters affected by scrap on a process chain level are clas-
sified as indirect. Production scrap may cause, for exam-
ple, changes in the material flow and affect the duration 
of waiting times and energy demand of machines. There-
fore, energy demand in idle state is considered an indirect 
parameter. In battery production, TBS is a major energy 
consumer, responsible for maintaining adequate produc-
tion conditions. Since these conditions must always be 
achieved, independently of the throughput and scrap rate, 
TBS energy demand is constant and, therefore, not con-
sidered in this assessment. 

A complete estimation of production costs includes 
fix and variable costs. Fix costs are associated with in-
vestments (e.g. machine acquisition), building, mainte-
nance, and overhead. Variable costs comprehend mate-
rial, energy, and labour. Since the fixed costs are strictly 
dependent on the production scale and are constant re-
gardless of the production throughput and scrap rates, 
they are not considered in this work. Moreover, for con-
stant working hours and number of shifts, labour costs 
also remain the same. Thus, material and energy are the 
only costs considered in this assessment. Material and 
processing energy costs are classified as direct since they 
are calculated based on agent-specific information, e.g. 
amount of scrap and energy demand. Indirect parameters 
comprehend the ones affected by scrap on a process chain 
level, i.e. energy costs related to idle states. 

3 Use Case: Battery Cell 
Production 

The proposed methodology was applied to the pilot line 
of the Battery LabFactory Braunschweig (BLB). The en-
ergy and process parameters to produce a 10-compart-
ments pouch cell were automatically acquired via the 
SCADA system described by Turetskyy et al. (2020) [16]. 

Since material prices for a pilot line are not consistent 
with the ones for a larger production scale, this use case 
considered the prices described in the BatPac cost model 
[8]. An around-the-clock production with the BLB ma-
chine capacities was simulated to investigate the depend-
encies and dynamics between processes, e.g. share of 
each machine state as well as material and energy flows. 
Moreover, differently from the BLB pilot line, the simu-
lation considered separate production lines for cathode 
and anode production, as shown in Figure 4. 

First, a one-month production with no scrap was sim-
ulated as a base scenario. Subsequently, the simulation 
was repeated in four scenarios with scrap rates ranging 
from small to large scale productions (1%, 5%, 10%, and 
15%). In each scenario, the same scrap rate was consid-
ered for every process which represents, for example, a 
yield of 90.4% for the 1% scenario. For batch processes, 
scrap is a share of the produced batch. For single unit 
processes, scrap represents an entire unit. 

The simulation results of all five scenarios were as-
sessed according to the direct and indirect parameters de-
scribed in the methodology. First, the influence of differ-
ent scrap rates was evaluated by assessing the direct pa-
rameters, i.e. the scrap-related energy demand as well as 
energy and material costs.  

Figure 5 presents the average material and energy 
costs associated with scrap per finished battery cell for 
each simulated scenario.  

As expected, a scrap rate increase is directly related 
to higher material and energy costs associated with scrap 
to produce one battery cell. However, this increase is not 
proportional to the scrap rate and affects differently the 
energy and material costs. For the 1% and 5% scenarios, 
the energy costs are slightly higher than the material 
costs. For the 10% and 15% scenarios, material costs be-
come more significant. 
 

 
Figure 4: Simulated processes adapted from the BLB production line. 
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Figure 5: Scrap-related energy and material costs to 

 produce one 10-compartments battery cell  
for the different simulated scenarios. 

  Scrap-related costs per cell [$] 

  Energy Material Total 

5%
   

sc
ra

p 
ra

te
 C. Mixing 0.001 0.192 0.193 

C. Calendering 0.003 0.022 0.025 
Formation 0.194 12.206 12.400 

15
%

 
sc

ra
p 

ra
te

  C. Mixing 0.011 2.380 2.391 
C. Calendering 0.027 0.242 0.269 
Formation  0.585 38.567 39.152 

Table 1: Comparison of the scrap-related costs for  
selected processes considering direct parameters (en-
ergy and material costs) for 5 and 15% scrap rates. 

A closer look at the process-specific costs shows that 
some processes are more critical from an energetic per-
spective, while others present significant material costs. 
The production type (batch or single unit) also plays an 
important role in the intensity of the scrap effect at each 
process.  

Moreover, cathode and anode pro-
duction present different variations, 
since cathode production is more intense 
from both energetic and material per-
spectives. Table 1 exemplifies the pro-
cess-specific variations for one pro-
duced battery cell based on three se-
lected processes (cathode mixing, cath-
ode calendering, and formation).  

Considering the selected processes 
of the cathode production, calendering is 
the most critical one from an energetic 
perspective while mixing is the most 
critical one with regard to material costs 
for both the 5 and 15% scenarios.  

Since cathodes are produced in batches, the energy 
and material costs related to one battery cell (containing 
10 cathodes and 10 anodes) are significantly lower than 
the costs incurred in the single unit processes of cell pro-
duction, e.g. formation. Regarding the total costs, the 
most critical processes for both scrap rates are cathode 
mixing and formation. Furthermore, a comparison of the 
variations between the 5% and 15% scenarios shows that 
the total cost of mixing increases by a factor of twelve 
while the formation total costs by a factor of three. 

In a second step, the influence of scrap rate on a pro-
cess chain level was evaluated by measuring the variation 
of indirect parameters for each scenario. The energy cost 
for the entire process chain was calculated based on the 
energy demand [kWh] in idle state for a finished battery 
cell and the electricity price for business in Germany of 
0.237 $ per kWh. To provide better identification of the 
variations for each scenario, the share of costs for idle 
and processing states are compared in Figure 6. 

The results of Figure 6 reinforce that a variation in the 
scrap rate is responsible for dynamic changes in the pro-
cess chain, e.g. duration of machine states. Since the pro-
cesses are rigidly interlinked and the throughput of each 
single unit process is reduced by an increase in the scrap 
rate, processes down the process chain have to wait 
longer for input material. This increase in waiting times 
leads to higher idle state costs. The reduction of through-
put at each single unit process also leads to fewer pro-
cessed parts in one month and, consequently, to a reduc-
tion in processing times and costs. It is also important to 
emphasize that these effects are not proportional to the 
scrap rate: in comparison to the base scenario, the share 
of costs in the idle state increases by 1.8% and 10.2% for 
the 1% and 15% scenarios, respectively.  
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Figure 6: Costs associated with energy demand in idle and processing states  

per finished battery cell for different scrap rates. 
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The share in idle states also differs between the elec-

trode and cell production. As shown in Figure 6, the share 
in idle state for electrode production decreases at higher 
scrap rates. Since scrap in the electrode production leads 
to a reduction of the batch size, processes whose duration 
depends on the material quantity (e.g. coating and calen-
dering) present shorter processing times and, conse-
quently, lower idle times. As previously mentioned, sin-
gle unit processes need to wait longer for input from the 
previous processes, therefore, presenting a higher share 
in idle state at higher scrap rates. 

Overall, the results show that different scrap rates 
have dynamic effects on the process chain, altering the 
material flow and the shares in processing and idle times. 
An analysis on the process level shows that processes are 
affected differently from both an energetic and economic 
perspective. The intensity of these effects is influenced 
by the process type (e.g. batch or single unit), position in 
the process chain, material costs, and energy demand.  

4 Summary and Outlook 
Material efficiency is fundamental for more cost-compet-
itive and environmentally sustainable battery production. 
Current works on energy and cost estimations consider 
production scrap rates as static values derived from his-
torical data and do not assess their dynamic effect on the 
process chain.  

To tackle this challenge, this work proposed a simu-
lation-based methodology to dynamically study the ef-
fect of different scrap rates on a process chain level and 
provide the identification of critical processes from an 
energetic and economic perspective. First, a discrete 
event and agent-based simulation was used to study the 
material and energy flows of one-month battery produc-
tion. The results for different scenarios were analysed 
with a focus on parameters with direct relation to produc-
tion scrap (e.g. material costs and processing energy).  

In addition, the effects of production scrap on a pro-
cess chain level were assessed based on indirect parame-
ters (e.g. energy demand and costs for idle states). The 
results demonstrated the importance of dynamically as-
sessing the effects of scrap rates since they differ for each 
process and are influenced by various factors, e.g. pro-
cess characteristics, position in the process chain, mate-
rial costs, and energy demand.  

 
 

Future works will study the effect of process-specific 
scrap rates to define acceptable tolerances and support 
the planning of quality gates.  
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