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Abstract. Despite continuous improvements in model-
ling, software tools and data availability, simulation pro-
jects of production systems still require a lot of manual 
effort, expertise in various disciplines and time. In many 
projects the high initial invest for building the simulation 
model is followed by a rather short period of experimen-
tation and analysis. As production systems have to be 
adapted at an increasing pace to respond to rapidly 
changing markets and business environments, simulation 
models of these systems become outdated earlier, reduc-
ing their useful time window. One way to extend this time 
window would be the implementation of a method of au-
tomated comparison with the current production systems 
and subsequent self-adaption of the model to reality to 
maintain and even improve its accuracy over time. This 
approach will be presented and validated at a real world 
use case. Such an enhanced simulation model can be 
called a digital twin of the production system. 

Introduction 
Discrete-event simulation models (DES) permit the in-
depth analysis and evaluation of improvement ideas on 
existing production systems without having to interfere 
with running production, which makes them a powerful 
tool for efficiency improvement of production [1]. Yet, 
in most companies simulation models of production sys-
tems are still built and used only in temporary projects 
[2]. This leads to limited benefits by high initial costs, 
since simulation models require a lot of expertise and 
time to be creates and implements and even more to ob-
tain satisfying accuracy.  

A longer usability would improve the return on in-
vestment of simulation models. But once a model is cre-
ated, it constantly has to be adapted to changes in the real 
production system, if it shall be used over the whole life 
cycle of the production system for ongoing analysis and 
improvement. Since manual adaption is extremely time 
consuming, an approach of continuous validation of sim-
ulation models and automated updating was developed. 
Validation is by VDI [2] defined as the “examination of 
the model as to whether the real behaviour of the mod-
elled system is sufficiently well rendered with regard to 
the examination target” (part 1, p. 21). The continuous 
validation and update from real production data turn the 
simulation model into a real digital twin of the production 
system [3]. 

1 Literature Review 
1.1 Model generation and maintenance 
[4] was one of the first to try semi-automated simulation
model generation. His approach primarily uses CAD data 
in STEP-format (STandard for the Exchange of Product
model data) to model the layout of the production system
automatically. Focussing more on model parameters, [5]
proposed an approach to parametrize a model template,
which was developed a-priori by experts, with data from
ERP (Enterprise-Resource-Planning ) and PDA (Produc-
tion Data Acquisition) systems and performed an analy-
sis of model convergence to reality.

[6] presented different tools and methods to automati-
cally generate simulation models which help designing a 
high-automated update process. One important step in this 
research field is the dissertation of Bergmann [7] which 
uses the Core Manufacturing Simulation Data standard to 
create simulation models. [8] introduced the concept of a 
Self-Adaptive Discrete Event Simulation (SADES) but did 
not provide an exemplary implementation. 
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A recent and more elaborate overview of existing ap-
proaches is given by [9]. 

1.2 Data input for simulation models 
[10] provide an early discussion of chances and obstacles 
to automated data input, but IT-systems in production 
have changed a lot in the last 20 years. [11] shows how 
automated input data management can lead to time re-
duction and enhanced performance. 

Several models and system architectures have been 
proposed to model the data exchange between physical 
and digital production systems. Those models are the 
foundation of the optimization and updating process of 
digital twins [12,13]. These works focus on the input side 
of the digital twin and updating, but do not discuss output 
validation and related automated update triggering in 
greater detail. Recent work of [14] presents a use case for 
data input in a remanufacturing facility. 

1.3 Model validation 
It exists a broad literature concerning the validation of 
computer models ranging from general discussion of dif-
ferent statistical tests methods [15,16] over the assesment 
of the general forecast possibilities in particular domains 
[17] to finetuning of specific tests in certain domains, for 
example ecological modelling [18].  

There are also various works on the challenge of sim-
ulation model validation [19].  

A general practical guide for validation was published 
and applied to two discrete simulation models of manu-
facturing cells by [20]. 

1.4 Open research topic 
Most of the existing approaches focus on automatic 
model generation. Some end up in a model translation, 
where the production sys-
tem is modelled in a cer-
tain modelling style and 
then translated into an 
DES, which only decre-
ases the modelling effort, 
if a model in the original 
modelling environment 
already exists [21]. 

To tackle the problem 
of the need for initial mo-
delling and because com-
mercial simulation tools 

permit the easy and intuitive creation of simple models 
even for beginners, the presented approach chooses a dif-
ferent path: An existing model, which is manually mod-
elled and implemented in a commercial simulation soft-
ware, shall be enhanced by validation and update mod-
ules to turn it into a digital twin, which permits its use 
over the entire life time of the production system. The 
hypothesis is that the automated validation and updating 
can improve the initial models performance in terms of 
prediction accuracy.  

2 Own Approach 
The presented approach is explicitly aimed at simulation 
models of existing production systems, which shall be im-
proved or controlled. It does not work for planning simu-
lation models of production systems, which are not yet ex-
isting, since a comparison to reality and real data-based up-
dates are impossible. Nevertheless, the approach can be 
used to transform planning simulation models into process 
accompanying simulation models during the building and 
commissioning phase of the production system. 

2.1 Process flow 
Production lines evolve over time and thus the input data 
needed for the simulation model, such as process times, 
availabilities, quality rates etc., change. Therefore, it is 
necessary to ensure that the digital twin always stays up-
to-date and offers a close representation of reality in a 
given time period. The presented solution is composed of 
a two parts iterative process (Fig. 1): the validation and 
the automated updating procedure. The simulation model 
itself is built and validated beforehand by simulation ex-
perts, following [2]. 

Figure 1: Iterative process of validation and automated updating. 
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2.2 Validation 
The objective of the validation is to automatically com-
pare the simulation model with reality on different levels. 
The first step is to compare the output of the simulation 
model and reality by using carefully chosen Key Perfor-
mance Indicators (KPIs) and boundary values. Further 
steps are an in-depth analysis using regression analysis. 

Deviance measures 
To evaluate the deviation of simulation runs to real-

ity, the relative error (see Eq.1) and the NRMSE (Nor-
malized Root Mean Square Error) (see Eq.2) are used. 
The variation quantifies the final state of production of 
the studied period whereas the NRMSE quantifies the 
difference between reality and simulation during the 
course of the studied period.  

 = 100 (1) 
 

with Nreal ,Nsim being the total amount of produced part at 
the end of the studied period respectively in reality and 
in simulation. 

= 1 , ,  (2) 

 

with xreal,i and xsim,i representing the total amount of pro-
duced parts at each point in time ti of the studied period, 
respectively for reality and simulation. 

Another possibility to measure the prediction error of 
the simulation model is Theil’s U2 (see Eq.3) which be-
comes 0 for a perfect prediction and 1 if equal to the naïve 
prediction [22]. When using Theils U2 it is important to 
know that big prediction errors have a greater influence 
on the metric [23]. 

= 1 ( , , )²1 ( , )²  (3) 

Regression analysis 
To get an even better understanding of the behaviour 

of digital twin and reality, it is also helpful to look at the 
linear regression fit of actual versus predicted values 
[24]. One important parameter to measure the difference 
between the simulation and real system using this regres-
sion approach is R² [25]. 

R² = (   )(    )  (3) 

The regression fit can also be described using the inter-
cept (a) defined in Eq.4 and the slope b (Eq.5) of the re-
gression line. For a perfect fit the slope would be 1 and 
the intercept would be 0. =  –     (4) 

= (   ) (   ) (   )   (5) 

Consequences of validation 
If the model output values deviate from the real output 
less than a predefined degree, it means the digital twin 
satisfies the expectations and represents the reality to a 
satisfactory extent. In the case that outputs do not match, 
input values of the digital twin have to be examined in 
order to differentiate between input parameters that are 
still up-to-date and obsolete ones. According to these 
analysis results, the automated updating will be triggered 
precisely for the relevant parameters. 

2.3 Update 
In order for the automated updating process to be effi-
cient, two prerequisites have to be fulfilled. A digital twin 
where the most effective input parameters are character-
ized as well as a data pipeline between data sources and 
simulation system are indispensable. Furthermore, the 
automated updating process allows replacing outdated 
data. 

Once the update is performed, a simulation run is re-
alized and the validation process is repeated to check the 
validity of the updated model. The whole process is re-
peated until the output is within the boundaries or until 
the digital twin cannot be further improved. In this case 
feedback is given to the user that an appropriate level of 
closeness could not be reach automatically and a manual 
intervention is necessary.  

An important outcome of this iterative process is to 
choose an appropriate time period for the data acquisi-
tion, that consequently gives the best compromise be-
tween data meaningfulness and acquisition effort while 
satisfying the performance criteria of the digital twin. 
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3 Use Case 
The described approach was developed in a research part-
nership between of the wbk Institute for Production Sci-
ence at the Karlsruhe Institute of Technology (KIT) and 
the central department Connected Manufacturing of the 
Bosch Powertrain Solutions division with the goal to de-
velop an agile production system. Its application and val-
idation are also part of this joint research project. 

3.1 Production system 
The exemplary production system, for which the digital 
twin is implemented, assembles car engine components 
in high volume and is composed of two areas which are 
connected via a conveyor. The two areas are assembly 
and testing, each semi-automated, following the Chaku-
Chaku principle. This means that the machines perform 
their processes mainly in an automated manner and the 
workers are primary required for loading and unloading 
of machines and transporting parts between them. The 
line produces various product types with differing mate-
rial flows, processing times, etc. The number of workers 
in each area varies due to external factors as vacations, 
sick days, reduced customer demand, trainings, etc. This 
has to be considered in the validation of the model. His-
toric production data from various sources is stored in a 
central data lake, including process times, change over 
delays, machine failures, scrap rates, etc. The software 
“Tecnomatix Plant Simulation” by Siemens is used to im-
plement the digital twin. 

3.2 Implementation 
Using the approach described above, a validation tool 
that enables the validation and automated updating pro-
cess is implemented. Before running the simulation 
model, the validation has to gather information about the 
system status at each point of time of the validation pe-
riod from existing information systems such as manufac-
turing execution systems (MES) and enterprise resource 
planing (ERP) systems. This includes the number of 
workers, produced product types and exceptionally long 
downtimes (more than one hour), that appear very rarely. 
If the simulation run would not consider this information, 
its comparison to reality would not be meaningful. The 
information about the number of workers in the produc-
tion system at a certain period in time is not stored in the 
data lake, but in a different IT-System which is not ac-
cessible and therefore has to be added manually. 

A python script preprocesses the real and simulation 
output data and compares them automatically. In the use 
case the chosen characteristic KPIs are: the progression 
of produced parts over time, the variation of the hourly 
Overall Equipment Effectiveness (OEE) as well as the to-
tal OEE within the analyzed time period. These KPIs give 
an overview over the systems performance and keep 
track of the behaviour of the digital twin during the whole 
simulation run. The permitted deviation of each KPI is 
decided on accordingly to the company’s performance 
goals and the systems inherent fluctuation. In the use 
case, the corresponding threshold of permitted deviation 
shall not exceed 3% for the relative error and 5 for 
NRMSE.  

If the validation process results in higher deviations, 
another Python script performs the automated update by 
directly accessing the IT systems and data warehouses to 
obtain the latest input data. The data pipeline is composed 
of SQL queries and then filtered and processed into ex-
ploitable update data for the Plant Simulation software. 

4 Results  
Four experiments were conducted on three different 
weeks of production. The first experiment validates an 
input data set and the model`s behaviour with the basic 
KPIs and their static thresholds, while the second exper-
iment provides an in-depth analysis of the behaviour us-
ing more advanced regression and statistical KPIs. The 
third and fourth experiments highlight the use of an auto-
mated targeted update to correct the input data and enable 
a better fitting of simulation with reality. 

4.1 Automated validation 
The first experiment was conducted for a production pe-
riod of one week. To model the non-deterministic behav-
iour of the simulation, five simulation runs with different 
random seed values were conducted for each experiment 
with Plant Simulation Tecnomatix to get a statistical con-
fidence of the results. Those five runs were considered 
sufficient as they well reflect the statistical repartition of 
the model while ensuring an acceptable optimized run 
time of the experiment. The automated validation com-
pares each simulation run with reality and on the one 
hand returns graphs (Figure 2) to help the user visualize 
the part’s production during the production period. On 
the other hand, it generates key values to quantify the 
production systems behaviour (Table 1).  
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Figure 2 shows a good fit of line output between the 

simulation runs and the reality for both the assembly and 
testing lines. This visual analysis is confirmed by the cal-
culated key values from Table 1. The mean variation for 
both lines is under 3% and the mean NRMSE is under 5. 

 
Figure 2: Validation output of assembly and testing  

line – experiment 1. 

Line 

Produced 
parts  
reality 

Mean 
produced 
parts  
simula-
tion 

Mean 
Variation 
(%) 

Mean 
NRMSE 

As-
sembly 

3650 3677 1.13 2.69 

Testing 3639 3545 2.58 3.57 

Table 1: Results of automatic validation. 

 
The fixed criteria from Section 3.2 are therefore fulfilled 
and the input data is considered still up-to-date. The focus 
of the analysis lies on the number of produced parts since 
the OEE follows this number linearly. 

4.2 In-depth analysis 
The second experiment focuses on an in-depth validation 
of another week which has a different production plan 
with different product variants and different production 
breaks. The visual analysis in Figure 3 already indicates 
a good fit between the curves of reality and the simulation 
runs. When we are now looking at the mean deviation of 
overall output, we see that it is 2.0% and 1.64%, which is 
lower than the defined thresholds, therefore the valida-
tion is positive according to this indicator. The NRMSE 
is 4.55 for assembly and 4.82 for testing, which also in-
dicates a good fit of the model given the threshold of 5. 

 

 
Figure 3: Validation output of assembly and testing  

line – experiment 2. 

Figure 4 shows the regression analysis of experiment 2 
including the related parameters for assembly and testing. 
R2 reaches with 0.86 and 0.9 quite high values which ex-
presses a good fit of the simulation model to reality as 
well. The slope is in both cases very close to 1 which is 
another indicator that the model in general provides a 
good estimation for the behaviour of the real system. The 
intercepts are 0.56 and 0.96 which is also a good value con-
sidering the absolute scale of the axis ranges from 0 to 100.  
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Therefore, the regression analysis underlines the pos-

itive validation result of the subjective visual impression 
and the basic deviation analysis. Theil’s U2 is 0.52 and 
0.54 respectively which also indicates a good fit. 

 

4.3 Targeted update of the input 
parameters 

For the third and fourth experiment, simulation and vali-
dation were conducted for another week of production. 
In the third experiment, the same input parameters as in 
Section 5.1 were used. However, the obtained results be-
fore any update (Table 2, Figure 5) from the validation 
process exceeded the fixed threshold.  

Therefore, an update of input parameters is triggered. 
The first step of the update process is to determine which 
data must be replaced and if the line is partially or totally 
concerned by the update. The mean relative error on both 
assembly and testing line are bigger than 3%, further-
more the NRMSE of the testing line is above 5. Conse-
quently, both lines have to be updated. 

Among the input data, it is possible to update the fol-
lowing parameters: Part routing, worker routing, failures, 
machine process times, manual process times, setup time 
and planned cycle times. 

 

 
Figure 5: Validation output before update on assembly 

and testing line – experiment 3. 

Nonetheless, among those parameters few register nota-
ble deviation during the chosen time period. In this paper, 
the focus was put on the machine process times, which 
encountered consequent variation over the studied week. 
After recalculating the probability density function of the 
machine process times from real data with a python 
script, the targeted update process compares the new cal-
culated values with the old values for each machine. The 
machine process times are modelled by a normal distribu-
tion through mean and standard deviation. If the mean dif-
fers more than 0.15 seconds and the standard deviation 
more than 0.2, the old value is replaced with the new value. 
As mentioned above, in this use case the other input data 
did not change significantly and did not need any update. 

Once the input parameters are updated, a fourth ex-
periment with the newly calculated input data is con-
ducted. Figure 6 depicts the output validation after the 
update for assembly and testing lines. Figure 6 shows im-
provement compared to Figure 5. The behaviour of the 
simulation is closer to reality and shows less variability. 
Those observations are verified through the key values in 
Table 2. For the assembly line, the mean relative error of 
simulation went down from 3.03% to 0.92% and the 
mean NRMSE went from 2.99 to 1.77.  

Figure 4: Regression analysis of testing and assembly  
line - experiment 2. 
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Figure 6: Validation output after update on assembly 

 and testing line – experiment 4. 

The capability of the targeted update process was none-
theless proved but still needs further improvement partic-
ularly concerning the threshold values and the trigger 
conditions for the targeted update mechanism. 

 

Experi-
ment Line 

Mean dif-
ference 
(%) 

Mean 
NRMSE 
output 

Validation 
passed? 

Before 
update 

Assembly 3.03 2.99 No 

After 
update Assembly 0.92 1.77 Yes 

Before 
update Testing 6.32 5.69 No 

After 
update Testing 3.2 3.22 No 

Table 2: Validation metrics before and after automatic  
update. 

 
 
 

For the testing line the mean relative error went down 
from 6.32% to 3.2% and the NRMSE from 5.69 to 3.22. 
A net improvement is indeed realized.  
The behaviour of the assembly line is now completely 
validated whereas the testing line still has a mean relative 
error barely above 3%. But the NRMSE has been im-
proved and is now below 5. The machine process times 
could not be further improved for the testing line. In a 
next step, other parameters of the simulation models, i.e. 
availabilities, scrap rate, etc. should be updated. For these 
parameters an automated update process is not yet imple-
mented. 

5 Conclusion and Outlook 
Motivated by the ever-changing structure of modern pro-
duction systems, an approach to enable simulation mod-
els to mirror these changes was developed. The approach 
contains a module for continuous validation which com-
pares simulation KPIs to real historic KPIs. Various met-
rics to measure the deviation of the simulation to reality 
for this validation module where discussed and imple-
mented ranging from simple deviation KPIs to more 
complex statistical and regression values. If a certain de-
viation threshold is surpassed, this module triggers an au-
tomated update module which changes the simulation 
model to better reflect reality.  

The application of this approach at a semi-automated 
production line of automotive components leads to a con-
vergence of the simulation model to reality, turning it into 
a digital twin. 

Further research has to be done to evaluate the behav-
iour of the digital twin in different scenarios of changes 
in the production system as well as its robustness to in-
complete and/or biased data. This includes the further 
study of the behaviour of the various reality metrics in-
troduced to this paper. Another line of research would be 
the extension of the available update mechanism of the 
digital twin. This could be combined with a thorough ex-
amination of the validation KPIs and their thresholds. 
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